Notes
Notes - notes.io |
The restrictive nature of the blood-brain barrier (BBB) prevents efficient treatment of many brain diseases. Focused ultrasound in combination with microbubbles has shown to safely and transiently increase BBB permeability. Here, the potential of Acoustic Cluster Therapy (ACT®), a microbubble platform specifically engineered for theranostic purposes, to increase the permeability of the BBB and improve accumulation of IRDye® 800CW-PEG and core-crosslinked polymeric micelles (CCPM) in the murine brain, was studied. Contrast enhanced magnetic resonance imaging (MRI) showed increased BBB permeability in all animals after ACT®. Near infrared fluorescence (NIRF) images of excised brains 1 h post ACT® revealed an increased accumulation of the IRDye® 800CW-PEG (5.2-fold) and CCPM (3.7-fold) in ACT®-treated brains compared to control brains, which was retained up to 24 h post ACT®. Confocal laser scanning microscopy (CLSM) showed improved extravasation and penetration of CCPM into the brain parenchyma after ACT®. Histological examination of brain sections showed no treatment related tissue damage. This study demonstrated that ACT® increases the permeability of the BBB and enhances accumulation of macromolecules and clinically relevant nanoparticles to the brain, taking a principal step in enabling improved treatment of various brain diseases.Photodynamic therapy (PDT) and chemotherapy show clinical promise in destroying orthotopic tumors but are insufficient against abscopal metastases. The research reports the combined application of an anti-CD73 antibody and chemo-PDT to synergistically amplify the anti-metastatic effects of T cell-mediated antitumor immunity. The cancer cell membrane (CM)-cloaked upconversion nanoparticles, integrating rose bengal (RB) and the reactive oxygen species (ROS)-sensitive polymer polyethylene glycol-thioketal-doxorubicin (PEG-TK-DOX, i.e., PTD), are tailored for near-infrared (NIR)-triggered chemo-PDT. CM camouflage enables nanoparticles' excellent tumor-targeting abilities and immune escape from macrophages. The combination of PDT and chemotherapy presents strong synergistic antitumor efficacy and synchronously causes a series of immunogenic cell death (ICD), leading to tumor-specific immunity. The anti-CD73 antibody prevents the immunosuppression phenomenon in tumors by blocking the adenosine pathway, and it is emerging as a sufficient immune checkpoint blockade when combined with ICD-elicited tumor therapies. As cancer membrane camouflaged nanoparticles CM@UCNP-RB/PTD combined with anti-CD73 antibodies, synergistic efficacy of chemotherapy and PDT not only destroys the orthotopic tumors by DOX and cytotoxic ROS but also prevents abscopal tumor metastasis via inducing systemic cytotoxic T cell responses with CD73 blockade. This strategy is promising in curing metastatic triple-negative breast cancer in preclinical research.Glioblastoma is among the most aggressive forms of cancers, with a median survival of just 15-20 months for patients despite maximum clinical intervention. The majority of conventional anti-cancer therapies fail due to associated off-site toxicities which can be addressed by developing target-specific drug delivery systems. Advances in nanotechnology have provided targeted systems to overcome drug delivery barriers associated with brain and other types of cancers. Dendrimers have emerged as promising vehicles for targeted drug and gene delivery. Dendrimer-mediated targeting strategies can be further enhanced through the addition of targeting ligands to enable receptor-specific interactions. Here, we explore the sugar moieties as ligands conjugated to hydroxyl-terminated polyamidoamine dendrimers to leverage altered metabolism in cancer and immune targeting. Using a highly facile click chemistry approach, we modified the surface of dendrimers with glucose, mannose, or galactose moieties in a well-defined manner, to target upregulated sugar transporters in the context of glioblastoma. We show that glucose modification significantly enhanced targeting of tumor-associated macrophages (TAMs) and microglia by increasing brain penetration and cellular internalization, while galactose modification shifts targeting away from TAMs towards galectins on glioblastoma tumor cells. Mannose modification did not alter TAMs and microglia targeting of these dendrimers, but did alter their kinetics of accumulation within the GBM tumor. find more The whole body biodistribution was largely similar between the systems. These results demonstrate that dendrimers are versatile delivery vehicles that can be modified to tailor their targeting for the treatment of glioblastoma and other cancers.Inducing mitochondrial malfunction is an appealing strategy to overcome tumor multidrug resistance (MDR). Reported here a versatile mitochondrial-damaging molecule, vitamin E succinate (VES), is creatively utilized to assist MDR reversal of doxorubicin hydrochloride (DOX·HCl) via a nanovesicle platform self-assembled from amphiphilic polyphosphazenes containing pH-sensitive 1H-benzo-[d]imidazol-2-yl) methanamine (BIMA) groups. Driven by multiple non-covalent interactions, VES is fully introduced into the hydrophobic membrane of DOX·HCl-loaded nanovesicles with loading content of 23.5%. The incorporated VES also offers robust anti-leakage property toward DOX·HCl under normal physiological conditions. More importantly, upon release within acidic tumor cells, VES can target mitochondria and result in various dysfunctions including excessive generation of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm) loss, and inhibited adenosine triphosphate (ATP) synthesis, which contribute to cell apoptosis and insufficient energy supply for drug efflux pumps. Consequently, the killing-effect of DOX·HCl is significantly enhanced toward drug resistant cancer cells at the optimal mass ratio of DOX·HCl to VES. Further in vivo antitumor investigation on nude mice bearing xenograft drug-resistant human chronic myelogenous leukemia K562/ADR tumors verifies the extremely enhanced anti-tumor efficacy of the dual drug-loaded nanovesicle with the tumor inhibition rate (TIR) of 82.38%. Collectively, this study provides a s safe, facile and promising strategy for both precise drug delivery and MDR eradication to improve cancer therapy.
Website: https://www.selleckchem.com/products/tiplaxtinin-pai-039.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team