Notes
![]() ![]() Notes - notes.io |
Modeling layout is an important first step for graphic design. Recently, methods for generating graphic layouts have progressed, particularly with Generative Adversarial Networks (GANs). However, the problem of specifying the locations and sizes of design elements usually involves constraints with respect to element attributes, such as area, aspect ratio and reading-order. Automating attribute conditional graphic layouts remains a complex and unsolved problem. In this paper, we introduce Attribute-conditioned Layout GAN to incorporate the attributes of design elements for graphic layout generation by forcing both the generator and the discriminator to meet attribute conditions. Due to the complexity of graphic designs, we further propose an element dropout method to make the discriminator look at partial lists of elements and learn their local patterns. In addition, we introduce various loss designs following different design principles for layout optimization. We demonstrate that the proposed method can synthesize graphic layouts conditioned on different element attributes. It can also adjust well-designed layouts to new sizes while retaining elements' original reading-orders. The effectiveness of our method is validated through a user study.In this paper, we introduce a concept called "virtual co-embodiment", which enables a user to share their virtual avatar with another entity (e.g., another user, robot, or autonomous agent). We describe a proof-of-concept in which two users can be immersed from a first-person perspective in a virtual environment and can have complementary levels of control (total, partial, or none) over a shared avatar. In addition, we conducted an experiment to investigate the influence of users' level of control over the shared avatar and prior knowledge of their actions on the users' sense of agency and motor actions. The results showed that participants are good at estimating their real level of control but significantly overestimate their sense of agency when they can anticipate the motion of the avatar. Moreover, participants performed similar body motions regardless of their real control over the avatar. The results also revealed that the internal dimension of the locus of control, which is a personality trait, is negatively correlated with the user's perceived level of control. The combined results unfold a new range of applications in the fields of virtual-reality-based training and collaborative teleoperation, where users would be able to share their virtual body.Synthesizing realistic videos of humans using neural networks has been a popular alternative to the conventional graphics-based rendering pipeline due to its high efficiency. Existing works typically formulate this as an image-to-image translation problem in 2D screen space, which leads to artifacts such as over-smoothing, missing body parts, and temporal instability of fine-scale detail, such as pose-dependent wrinkles in the clothing. In this paper, we propose a novel human video synthesis method that approaches these limiting factors by explicitly disentangling the learning of time-coherent fine-scale details from the embedding of the human in 2D screen space. More specifically, our method relies on the combination of two convolutional neural networks (CNNs). Given the pose information, the first CNN predicts a dynamic texture map that contains time-coherent high-frequency details, and the second CNN conditions the generation of the final video on the temporally coherent output of the first CNN. We demonstrate several applications of our approach, such as human reenactment and novel view synthesis from monocular video, where we show significant improvement over the state of the art both qualitatively and quantitatively.Procedural modeling has produced amazing results, yet fundamental issues such as controllability and limited user guidance persist. selleck products introduce a novel procedural system called PICO (Procedural Iterative Constrained Optimizer) using PICO-Graph, a procedural model designed with optimization in mind. PICO enables the exploration of generative designs by combining user and environmental constraints into a single framework and using optimization without the need to write procedural rules. The PICO-Graph is a data-flow procedural model consisting of a set of geometry-generating operation nodes. The forward generation is initiated by sending geometric objects from initial nodes. These objects travel through the graph, triggering generation of more objects along the way. We combine the PICO-Graph with evolutionary optimization that allows for exploration of the generated models and the generation of variants. The user defines the geometry-generating operations and the set of constraints; e.g, whether an existing object should be supported by the generated model, whether symmetries exist, etc. PICO then generates geometric models that fulfill the constraints through optimization, allowing interactive user control of constraints. We show PICO on a variety of examples, including generation of procedural chairs, generation of support structures for 3D printing, or generation of procedural terrains matching a given input.Motivated by the fact that the medial axis transform is able to encode the shape completely, we propose to use as few medial balls as possible to approximate the original enclosed volume by the boundary surface. We progressively select new medial balls, in a top-down style, to enlarge the region spanned by the existing medial balls. The key spirit of the selection strategy is to encourage large medial balls while imposing given geometric constraints. We further propose a speedup technique based on a provable observation that the intersection of medial balls implies the adjacency of power cells (in the sense of the power crust). We further elaborate the selection rules in combination with two closely related applications. #link# One application is to develop an easy-to use ball-stick modeling system that helps non-professional users to quickly build a shape with only balls and wires, but any penetration between two medial balls must be suppressed. The other application is to generate porous structures with convex, compact (with a high isoperimetric quotient) and shape-aware pores where two adjacent spherical pores may have penetration as long as the mechanical rigidity can be well preserved.
Website: https://www.selleckchem.com/products/PHA-739358(Danusertib).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team