Notes
![]() ![]() Notes - notes.io |
Angiotensin-converting enzyme 2 (ACE2) is a member of the renin-angiotension system, however, the correlation between ACE2 and prognosis in UCEC (Uterine Corpus Endometrial Carcinoma) and KIRP (Kidney Renal Papillary Cell Carcinoma) is not clear. We analyzed the expression levels of ACE2 in the Oncomine and TIMER databases, the correlation between ACE2 and overall survival in the PrognoScan, GEPIA and Kaplan-Meier plotter databases. The correlation between ACE2 and immune infiltration level and the type markers of immune cells was investigated in TIMER database. A prognosis analysis based on the expression levels of ACE2 was further performed in related immune cells subgroup. The ACE2 promoter methylation profile was tested in the UALCAN database. In addition, we used GSE30589 and GSE52920 databases to elucidate the changes of ACE2 expression in vivo and in vitro after SARS-CoV infection. ACE2 was elevated in UCEC and KIRP, and high ACE2 had a favorable prognosis. The expression of ACE2 was positively correlated with the level of immune infiltration of macrophage in KIRP, B cell, CD4+T cell, neutrophil and dendritic cell immune infiltration levels in UCEC. ACE2 was significantly positively correlated with the type markers of B cells and neutrophils, macrophages in UCEC, while ACE2 in KIRP was positively correlated with the type markers of macrophages. High ACE2 expression level had a favorable prognosis in different enriched immune cells subgroups in UCEC and KIRP. And the promoter methylation levels of ACE2 in UCEC and KIRP were significantly reduced. What's more, we found that the expression of ACE2 decreased in vivo and in vitro after SARS-CoV infection. In conclusion, ACE2 expression increased significantly in UCEC and KIRP, elevated ACE2 was positively correlated with immune infiltration and prognosis. Moreover, tumor tissues may be more susceptible to SARS-CoV-2 infection in COVID-19 patients with UCEC and KIRP, which may worsen the prognosis.Chemiluminescence-enzyme immunoassays make it possible to measure trace components with high sensitivity and selectivity due to the high specificity of the antigen-antibody reaction and the high sensitivity of chemiluminescence assays. However, using an enzyme-labeled antibody suffers from many problems such as low reproducibility due to the instability of the enzyme and inhibition of antigen-antibody reaction due to its steric effect. Therefore, herein we report an innovative non-enzymatic chemiluminescence immunoassays labeling reagent through using quinone as a signal-generating tag coupled with biotin as a binder, to overcome enzymatic labeling problems. Biotinylated-1,4-naphthoquinone (biotin-NQ) was synthesized and characterized and it could produce long-lasting chemiluminescence upon mixing with dithiothreitol and luminol based on the redox cycle of quinone. Biotin-NQ showed exceptional stability towards different stress factors that may be encountered during performing the immunoassay such as high temperatures, highly acidic and alkaline conditions, and repeated freeze-thaw cycles. On the other hand, all these conditions lead to decreased labeling enzyme reactivity due to possible denaturation of its protein structure. Finally, the measurement of the biotin-labeled antibody was successfully performed using biotin-NQ and avidin. As a result, the antibody could be detected down to 25.7 nM which is 2.5 times sensitive than biotin-HRP chemiluminescence-enzyme immunoassays. Moreover, our method was applied successfully for determination of avidin using immobilized biotinylated antibody and biotin-NQ, which simulates immunoassays. Avidin could be detected down to 23.4 nM with excellent linearity (r = 0.996). Accordingly, our developed reagent, biotin-NQ, could be used as a universal highly stable, cost-effective, and steric free non-enzymatic label for immunoassays. Applications of conventional linear ligation-rolling circle amplification (RCA) are restricted by the sophisticated operation steps and unsatisfactory picomolar-level detection limits. We herein demonstrate an RCA-based cascade amplification reaction that converts a side-reaction to secondary amplification, which improves the detection limit and simplifies the operation compared to linear ligation-RCA assays. The proposed nicking-assisted enzymatic cascade amplification (NECA) comprises an on-loop amplification reaction using circular templates to generate intermediate amplicons, and an off-loop amplification reaction using intermediate amplicons as primers for end amplicons. The whole NECA reaction is homogeneous and isothermal. Amplicons anneal to detection probes that are grafted onto magnetic nanoparticles (MNPs), such that MNP clusters form and can be detected in real-time using optomagnetic measurements. The optomagnetic sensor detects the presence and size increase of MNP clusters by optical transmission measurements in an oscillating magnetic field. A detection limit of 2 fM was achieved with a total assay time of ca. 70 min. By combining optomagnetic readouts of signal phase lag and hydrodynamic size increase of MNPs, NECA-based target quantification provided a wide dynamic detection range of ca. SHR3162 4.5 orders of magnitude. Moreover, the specificity and the serum detection capability of the proposed method were investigated. Antibiotics abuse now poses a global threat to public health. Monitoring their residual levels as well as metabolites are of great importance, still challenges remain in in situ tracing during the circulation. Herein, taking the typical antibacterial Enrofloxacin (ENR) as a subject, a paper-based aptasensor was tailored by manipulating a duo of aptameric moieties to "sandwich" the target in a lateral-flow regime. To visualize the tight-binding sandwich motif more vividly, an irregular yet robust DNA-bridged gold nanoparticles (AuNPs) proximity strategy was developed with recourse to terminal deoxynucleotidyl transferase, of which the nonaggregate constraining feature was unveiled via optical absorption and scanning probe topography. This complex performed exceptionally better in the test strip context than single-particle tags, leading to an enhanced on-chip focusing. Rather than qualitative color developing, further efforts were taken to visualize the readouts in a quantitative manner by exploiting the smartphone camera for pattern recognition along with data processing in a professional App.
Website: https://www.selleckchem.com/products/fluzoparib.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team