Notes
![]() ![]() Notes - notes.io |
Bone implants play a crucial role in bone repairing. Nevertheless, low capability of osteoinductivity and osteogenic differentiation for bone regeneration are disadvantages of bone implants. Therefore, it is imperative to develop a general and facile technology to promote the bioactivity of existing implants. Herein, a facile amorphous carbon-coating approach was developed to stimulate osteogenesis on diverse biomaterials, including bioceramics, biometals, and biopolymers via magnetron sputtering deposition. The results confirmed that the amorphous carbon-coating-modified surfaces could significantly enhance osteogenesis of bone marrow mesenchymal stem cells (BMSCs) on every kind of biomaterial surface. Furthermore, it was demonstrated that the FAK/ERK1/2 signaling pathways were involved in the osteogenic effects of this amorphous carbon coating. The bone regeneration ability using the calvarial bone defect model of rats confirmed that the amorphous carbon coating induced faster bone formation and mineralization, which suggested the effect of amorphous carbon coating on stimulating osteogenesis in vivo. These results suggest that the approach involving modifying a surface with amorphous carbon provides a general and simple strategy to enhance the osteogenesis for diverse biomaterials, and this has promising potential for bone repairing applications.A new method has been developed for the preparation of brightly fluorescent and stable DNA-silver nanoclusters (DNA-AgNCs). The approach takes advantage of specific interactions occurring between melamine and thymine residues in a DNA template. These interactions cause the formation of a melamine-DNA-AgNC complex (Mel-DNA-AgNCs), in which a change in the environment of the DNA template causes binding of additional Ag+ and an enhancement in the fluorescence efficiency and stability. The effects of the nature of the template DNA, DNA Ag+ NaBH4 ratio, pH and temperature were systematically assessed in order to maximize the melamine-promoted fluorescence enhancement. The results show that the Mel-DNA-AgNCs, generated under the optimal conditions, exhibit a ca. 3-fold larger fluorescence efficiency and long-term stability (70 d) in contrast to those of DNA-AgNCs in the absence of melamine. Importantly, the bright and stable Mel-DNA-AgNCs exhibit antimicrobial activities against Gram-positive and Gram-negative bacteria that are superior to those of DNA-AgNCs alone. To the best of our knowledge, this is the first report describing the synthesis of DNA-AgNCs that have improved fluorescence efficiencies and that function as effective antimicrobial agents.Photothermal therapy (PTT) has shown promising potential and bright prospects in damaging primary tumors; however, it is limited to metastatic and recrudescent tumors as PTT requires straightforward light irradiation. Moreover, metastatic and recrudescent tumor immunosuppression due to host T-cell antitumor activity is dramatically impeded because of programmed cell death 1 ligand (PD-L1) and programmed cell death receptor 1 (PD-1) pathways and immune checkpoint blockade (ICB) therapy. In this work, we demonstrate that PTT combined with ICB could not only eliminate primary tumors, but also prevent tumor metastasis to the lungs/liver. In particular, we have designed immunoadjuvant nanomedicine carriers on the basis of polydopamine (PDA) simultaneously loaded with resiquimod (R848)-a kind of toll-like receptor 7 (TLR7) agonist-and carbon dots (CDs)-a fluorescent agent. This nanomedicine is defined as PDA-PEG-R848-CD nanoparticle (NP). The multitasking PDA-PEG-R848-CD NPs can destroy 4T1 breast tumors by PTT under near-infrared laser irradiation in addition to generating tumor-associated antigens. Moreover, the PTT effect triggered the release of R848, thereby inducing a strong antitumor immune response. Meanwhile, this synergistic therapy also shows the abscopal effects by completely inhibiting the growth of untreated distant tumors by effectively triggering the tumors infiltrated by CD3/CD8. Such findings suggest that PDA-PEG-R848-CD NPs could significantly potentiate the systemic therapeutic efficiency of PD-L1 checkpoint blockade therapy by activating both innate and adaptive immune systems in the body.Sulfur dioxide (SO2) derivatives play critical roles in various biological processes. Therefore, effective methods for monitoring SO2 are of vital importance in bisulfite/sulfite biology. In this study, a two-photon (TP) imaging probe (CQ-SO2) for detecting SO2 derivatives was designed and constructed, based on the chromenoquinoline (CQ) fluorophore and a β-chlorovinyl aldehyde sensing moiety. The TP properties of the CQ derivatives were revealed for the first time in this study. This study enriched the biological application range of CQ derivatives and also provided a new choice for the development of TP dyes. In particular, the CQ-SO2 probe exhibited a fast response time (about 5 s), low detection limit (16 nM) and ultrahigh specificity towards SO2 derivatives. Furthermore, the probe was successfully applied to the highly specific TP bioimaging of SO2 derivatives in living cells and zebrafish.Ag2S quantum dots have received extensive attention as theranostic agents for second near-infrared (NIR-II) fluorescence and photoacoustic dual-mode imaging, and photothermal therapy. However, it is still greatly challenging to synthesize Ag2S quantum dots using aqueous synthesis. In this study, genetically engineered polypeptide-capped Ag2S quantum dots were successfully synthesized. Three cysteines were integrated to the C-terminal and N-terminal of RGDPC10A to enhance the stability and brightness of the synthesized Ag2S quantum dots. selleck products The RGDPC10A-capped Ag2S quantum dots exhibited excellent stability, outstanding resistance to photobleaching, and a superior quantum yield of up to 3.78% in the NIR-II biological window. The in vitro and in vivo results showed that the RGDPC10A-capped Ag2S quantum dots possessed typical NIR-II fluorescence, photoacoustic imaging, and photothermal therapeutic effectiveness against tumors. Moreover, the results of toxicity assays suggested that the RGDPC10A-capped Ag2S quantum dots have negligible long-term toxicity.
Read More: https://www.selleckchem.com/products/Elesclomol.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team