Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The relationship between energy use and climate change is the center of analysis about mitigation and adaptation. Yet current studies of the electricity-climate relationship focus on developed countries. Little was known about the energy-use behavior in group living. By using college students' monthly electricity-use data from September 2018 to August 2019 in Beijing, China, we build a weighted least square regression model and found a U-shaped relationship between temperature and electricity consumption. The results show that one additional day of temperature exceeding 30 °C would cause a 16.8% increase in monthly electricity consumption with reference to 18-22 °C while one additional day of temperature below -6 °C will increase it by 6%. The magnitudes of temperature effect on electricity are much greater than those in Shanghai and California. Further, we find that building structures, such as windows orientation and floor height, play important roles in the temperature-electricity relationship. Finally, we predict the changes in electricity use in a collection of Representative Concentration Pathways (RCP). It finds that the electricity use in summer in north China would increase by 72.8% in RCP 4.5, 79.5% in RCP6.0, and 91.2% in RCP8.5. Our study could be extended to the urban area in northern China, and indicates how the electricity use would respond to climate change in the Beijing-Tianjin-Hebei Urban Agglomeration, covering 8.1% of China's population and 8.4% of gross domestic product. Climate change impact on electricity use in residential and commercial sectors is significant and varying in regions. To achieve sustainable and environmental-friendly development, building structures could play a more effective role in energy-saving and adaptation to climate change.Gold mining has played a significant role in Ghana's economy for centuries. MLN4924 manufacturer Regulation of this industry has varied over time and while industrial mining is prevalent in the country, the expansion of artisanal mining, or Galamsey has escalated in recent years. Many of these artisanal mines are not only harmful to human health due to the use of Mercury (Hg) in the amalgamation process, but also leave a significant footprint on terrestrial ecosystems, degrading and destroying forested ecosystems in the region. In this study, the Landsat image archive available through Google Earth Engine was used to quantify the total footprint of vegetation loss due to artisanal gold mines in Ghana from 2005 to 2019 and understand how conversion of forested regions to mining has changed over a decadal period from 2007 to 2017. A combination of machine learning and change detection algorithms were used to calculate different land cover conversions and the timing of conversion annually. Within the study area of southwestern Ghana, our results indicate that approximately 47,000 ha (⨦2218 ha) of vegetation were converted to mining at an average rate of ~2600 ha yr-1. The results indicate that a high percentage (~50%) of this mining occurred between 2014 and 2017. Around 700 ha of this mining occurred within protected areas as mapped by the World Database of Protected Areas. In addition to deforestation, increased artisanal mining activity in recent years has the potential to affect human health, access to drinking water resources and food security. This work expands upon limited research into the spatial footprint of Galamsey in Ghana, complements mapping efforts by local geographers, and will support efforts by the government of Ghana to monitor deforestation caused by artisanal mining.Industrial wastewaters usually possess a wide range of nitrate strength. Microalgae-based nitrate-rich wastewater treatment could realize nitrate recovery along with CO2 sequestration for sustainable biomass production, but the low tolerance of the microalgal strains to high-strength nitrate restricted the treatment process. The present study comprehensively evaluated a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and biomass production in synthetic wastewater with a broad range of nitrate strength (0.24-7.0 g NO3--N/L). This alga could acclimate to high nitrate strength up to 3.5 g NO3--N/L (HN) without compromising biomass production. Nitrate could be completely removed within four days when low nitrate (0.24 g NO3--N/L, LN) was loaded. The maximum nitrate removal rate of 331 mg N/L/day and specific nitrate removal rate of 360 mg N/day/g cell was obtained under medium nitrate condition (1.8 g NO3--N/L, MN). High-nitrate stress under 7.0 g NO3--N/L (SHN) caused anlgal biorefinery.Determining water supply intensity of fracture/conduits is one of the difficulties involved in the research of plant transpiration water consumption in the Karst Critical Zone (KCZ). Our aims were to evaluate the effect of groundwater depth on plant sap flow velocities in KCZ. Thus, four sampled plots with different groundwater depth (GD) in boreholes KCZ7 (4 to 10 m GD), KCZ5 (2 to 9 m GD), KCZ1 (0 to 8 m GD) and KCZ3 (2 to 5 m GD), were selected, and the plant stem sap flow velocity in each plot were also monitored continuously and automatically using heat ratio techniques. The daily sap flow flux of Toona sinensis varied between 0.35 kg d-1 in KCZ3 and 1.50 kg d-1 in KCZ1. Photosynthetically active radiation (PAR), vapor pressure deficit (VPD), and gust velocity (ZWS) were the primary meteorological factors that determined the sap flow velocity of T. sinensis, which contributed to a regression equation, while the influence of GD on sap flow was complex. Most of the sap flow velocity had no obvious significant correlation with the GD; however, the sap flow velocity in four different GD showed significant differences (P less then 0.05). Unit sap flow velocity changes induced by unit GD changes (Kv) in KCZ7 and KCZ1 samples was faster than that of other samples. In brief, the sap flow velocity was mainly affected by the PAR and VPD in KCZ7, KCZ5 and KCZ1 because of the sufficient epikarst water, while the sap flow velocity in KCZ3 was mainly affected by the rock water content. The karst aquifer medium and GD was the main factors causing the difference sap flow velocity in the four sample plots. This finding indicated that KCZ aquifer medium structure may have an important influence on plant water utilization.
Homepage: https://www.selleckchem.com/products/mln-4924.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team