NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

The total mitochondrial genome from the western myotis: Myotis bombinus Jones, 1906 within mainland involving Korea (Chiroptera, Vespertilionidae).
The use of dyadic designs could help to deepen our understanding as it would take into account the interdependence of both partners.Purpose The manual generation of training data for the semantic segmentation of medical images using deep neural networks is a time-consuming and error-prone task. In this paper, we investigate the effect of different levels of realism on the training of deep neural networks for semantic segmentation of robotic instruments. An interactive virtual-reality environment was developed to generate synthetic images for robot-aided endoscopic surgery. In contrast with earlier works, we use physically based rendering for increased realism. Methods Using a virtual reality simulator that replicates our robotic setup, three synthetic image databases with an increasing level of realism were generated flat, basic, and realistic (using the physically-based rendering). Each of those databases was used to train 20 instances of a UNet-based semantic-segmentation deep-learning model. The networks trained with only synthetic images were evaluated on the segmentation of 160 endoscopic images of a phantom. The networks were compar help bridge the domain gap in machine learning.Purpose Localizing structures and estimating the motion of a specific target region are common problems for navigation during surgical interventions. Optical coherence tomography (OCT) is an imaging modality with a high spatial and temporal resolution that has been used for intraoperative imaging and also for motion estimation, for example, in the context of ophthalmic surgery or cochleostomy. Recently, motion estimation between a template and a moving OCT image has been studied with deep learning methods to overcome the shortcomings of conventional, feature-based methods. selleck chemicals Methods We investigate whether using a temporal stream of OCT image volumes can improve deep learning-based motion estimation performance. For this purpose, we design and evaluate several 3D and 4D deep learning methods and we propose a new deep learning approach. Also, we propose a temporal regularization strategy at the model output. Results Using a tissue dataset without additional markers, our deep learning methods using 4D data outperform previous approaches. The best performing 4D architecture achieves an correlation coefficient (aCC) of 98.58% compared to 85.0% of a previous 3D deep learning method. Also, our temporal regularization strategy at the output further improves 4D model performance to an aCC of 99.06%. In particular, our 4D method works well for larger motion and is robust toward image rotations and motion distortions. Conclusions We propose 4D spatio-temporal deep learning for OCT-based motion estimation. On a tissue dataset, we find that using 4D information for the model input improves performance while maintaining reasonable inference times. Our regularization strategy demonstrates that additional temporal information is also beneficial at the model output.Purpose The cup-to-disc ratio (CDR), a clinical metric of the relative size of the optic cup to the optic disc, is a key indicator of glaucoma, a chronic eye disease leading to loss of vision. CDR can be measured from fundus images through the segmentation of optic disc and optic cup . Deep convolutional networks have been proposed to achieve biomedical image segmentation with less time and more accuracy, but requires large amounts of annotated training data on a target domain, which is often unavailable. Unsupervised domain adaptation framework alleviates this problem through leveraging off-the-shelf labeled data from its relevant source domains, which is realized by learning domain invariant features and improving the generalization capabilities of the segmentation model. Methods In this paper, we propose a WGAN domain adaptation framework for detecting optic disc-and-cup boundary in fundus images. Specifically, we build a novel adversarial domain adaptation framework that is guided by Wasserstein distance, therefore with better stability and convergence than typical adversarial methods. We finally evaluate our approach on publicly available datasets. Results Our experiments show that the proposed approach improves Intersection-over-Union score for optic disc-and-cup segmentation, Dice score and reduces the root-mean-square error of cup-to-disc ratio, when we compare it with direct transfer learning and other state-of-the-art adversarial domain adaptation methods. Conclusion With this work, we demonstrate that WGAN guided domain adaptation obtains a state-of-the-art performance for the joint optic disc-and-cup segmentation in fundus images.Purpose Biomechanical simulation of anatomical deformations caused by ultrasound probe pressure is of outstanding importance for several applications, from the testing of robotic acquisition systems to multi-modal image fusion and development of ultrasound training platforms. Different approaches can be exploited for modelling the probe-tissue interaction, each achieving different trade-offs among accuracy, computation time and stability. Methods We assess the performances of different strategies based on the finite element method for modelling the interaction between the rigid probe and soft tissues. Probe-tissue contact is modelled using (i) penalty forces, (ii) constraint forces, and (iii) by prescribing the displacement of the mesh surface nodes. These methods are tested in the challenging context of ultrasound scanning of the breast, an organ undergoing large nonlinear deformations during the procedure. Results The obtained results are evaluated against those of a non-physically based method. While all methods achieve similar accuracy, performance in terms of stability and speed shows high variability, especially for those methods modelling the contacts explicitly. Overall, prescribing surface displacements is the approach with best performances, but it requires prior knowledge of the contact area and probe trajectory. Conclusions In this work, we present different strategies for modelling probe-tissue interaction, each able to achieve different compromises among accuracy, speed and stability. The choice of the preferred approach highly depends on the requirements of the specific clinical application. Since the presented methodologies can be applied to describe general tool-tissue interactions, this work can be seen as a reference for researchers seeking the most appropriate strategy to model anatomical deformation induced by the interaction with medical tools.
Homepage: https://www.selleckchem.com/products/d-1553.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.