Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
This study aimed at recovering a highly concentrated starch and protein stream from the brewer's spent grain (BSG). The effect of pretreatment temperature and retention time on the solubilization of starch and protein; and the generation of fermentation inhibitors were studied. Then, the application of recovered streams for fungal cultivation was evaluated using different edible fungi Aspergillus oryzae, Neurospora intermedia, and Rhizopus delemar. The hydrothermal pretreatment resulted in the highest solubilized starch concentration, 43 g/L, corresponding to 83% solubilization of initial BSG starch content. The highest protein concentration was 27 g/L (48% solubilization of initial BSG protein content). Cultivation with Neurospora intermedia on the recovered streams from the two best pretreatment conditions, 140 ℃ for 4 h and 180 ℃ for 30 min, resulted in pure fungal biomass with the highest protein content 59.62% and 50.42% w/w, respectively. Finally, a brewery biorefinery was proposed for the valorization of BSG.Steam-gasification is drawing great interests as it yields higher H2 in syngas than any other gasification process. In this article, an equilibrium steam-gasification model developed in Aspen plus has been presented. The effect of the major input variables along with their synchronized effects on the response variables i.e., cold gas efficiency (CGE) and lower heating value (LHV) have been performed. Steam-gasification process optimization has been carried out employing response surface methodology (RSM) considering wide variety of biomass to get the best possible outcomes. The generic relations for both CGE and LHV as response variables have also been framed from obtained individual relations to estimate the response variables for considered biomass feeds at optimum operating conditions. The analysis reveals that the optimum response is obtained having almost 100% desirability (D) at the optimum operating condition (steam to biomass ratio of 0.7 and gasification temperature between 780 and 790 °C) of the steam-gasification model.Kinetic triplet, thermal degradation behaviour and thermodynamic properties of peanut shells were determined on the basis of non-isothermal thermogravimetric experiments conducted at three different heating rates under N2 atmosphere. A single differential peak was observed for the devolatilization stage. The kinetic triplet of devolatilization stage was determined using Coats-Redfern and a combined method consisting the utilization of isoconversional and Criado methods. Kinetic validation revealed that the kinetic triplet determined using the combined method described the experimental values more precisely. The reaction mechanism ascertained by the combined method was D5-D3 combination. The Ea value was strong function of conversion, and computed using isoconversional methods (Boswell, Flynn-Wall-Ozawa, Starink, Tang) between 169 and 268 kJ/mol. Entalphy, entrophy and Gibbs energy changes were computed in 164-259 kJ/mol, -37-141 J/(mol.K) and 173-187 kJ/mol ranges, respectively. The comprehensive pyrolysis index values were also calculated, and shown to increase with increasing heating rate.The main aim of this work was to evaluate the efficiency of producing caproic acid and other volatile fatty acids using a co-digestion between cheese whey and sewage sludge in a continuous reactor. The effect of two different feeding regimes (one and two per day) and three hydraulic retention times (HRT) (15, 10 and 6 days) on the organic acids production were studied. The optimal conditions for the process were 10 days HRT, 2 feeding cycles per day, reaching a maximum degree of acidification of 44%. Under these conditions, the most abundant organic acid was caproic acid. The analysis of the microbial community dynamics in the reactor during the HRT changes revealed a microbiome enriched in organisms involved in caproic acid production. Additionally, the production of polyhydroxyalkanoates using the organic acids stream as feeding was verified in a fed-batch experiment obtaining a copolymer formed by hydroxybutyrate, hydroxyvalerate and hydroxyhexanoate.Anaerobic digestion (AD) is a matured technology for waste (water) remediation/stabilization and bioenergy generation in the form of biogas. AD technology has several inherent benefits ranging from generating renewable energy, remediating waste (water), and reducing greenhouse gas emission to improving health/hygiene and the overall socio-economic status of rural communities in developing nations. click here In recent years, there has been a paradigm shift in applications of AD technology beyond biogas. This special issue (SI) entitled, "Anaerobic Digestion Beyond Biogas (ADBB-2021)," was conceptualized to incorporate some of the recent advances in AD in which the emphasis is beyond biogas, such as anaerobic biorefinery, chain elongation, treatment of micropollutants, toxicity and system stability, digestate as biofertilizer, bio-electrochemical systems, innovative bioreactors, carbon sequestration, biogas upgrading, microbiomes, waste (water) remediation, residues/waste pre-treatment, promoter addition, and modeling, process control, and automation, among others. This VSI ADBB-2021 contains 53 manuscripts (14 critical reviews and 39 research). The key findings of each manuscript are briefly summarized here, which can serve as a valuable resource for AD researchers to learn of major advances in AD technology and identify future research directions.
Trophoblast development is a crucial event in placentation and pregnancy complications but its underlying mechanisms remain unclear. Thus, we aimed at investigating the role of DiO
in trophoblast cell line decisions and assessing its placental villous expression in early recurrent miscarriage (ERM) patients.
The placental villous expression of DiO
was determined with immunofluorescence. Cell proliferation was measured with the CCK8 kit while cell-cycle and apoptosis were studied with flow-cytometry. Cell migration and invasion were measured with wound-healing and transwell assays, respectively. Gene expression was then assessed with RT-qPCR and western blotting.
DiO
is expressed in the CTB, PCT, DCT and STB of the placenta. Its overexpression arrested trophoblast cell line proliferation at the G1 phase of the cell-cycle by downregulating cyclin-D1 and PCNA, while promoting apoptosis via increased caspase-3 activity and inhibition of the AKT and ERK1/2 signaling pathways. Also, it augmented trophoblast cell line migration and invasion via the upregulation of N-cadherin, vimentin, fascin-1, twist-1 and other epithelial-mesenchymal transition genes.
Homepage: https://www.selleckchem.com/products/AT7867.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team