Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
s revealed the increase of total hydroyproline and sGAG contents in repopulated hUAs with VSMCs. Specifically, total hydroxyproline and sGAG content after the 1st, 2nd and 3rd wk was 71 ± 10, 74 ± 9 and 86 ± 8 μg hydroxyproline/mg of dry tissue weight and 2 ± 1, 3 ± 1 and 3 ± 1 μg sGAG/mg of dry tissue weight, respectively. Statistically significant differences were observed between all study groups (P less then 0.05). CONCLUSION VSMCs were successfully obtained from WJ-MSCs with the proposed differentiation protocol. Furthermore, hUAs were efficiently repopulated by VSMCs. Differentiated VSMCs from WJ-MSCs could provide an alternative source of cells for vascular tissue engineering. ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.In steady state, the intestinal epithelium forms an important part of the gut barrier to defend against luminal bacterial attack. However, the intestinal epithelium is compromised by ionizing irradiation due to its inherent self-renewing capacity. In this process, small intestinal bacterial overgrowth is a critical event that reciprocally alters the immune milieu. In other words, intestinal bacterial dysbiosis induces inflammation in response to intestinal injuries, thus influencing the repair process of irradiated lesions. In fact, it is accepted that commensal bacteria can generally enhance the host radiation sensitivity. To address the determination of radiation sensitivity, we hypothesize that Paneth cells press a critical "button" because these cells are central to intestinal health and disease by using their peptides, which are responsible for controlling stem cell development in the small intestine and luminal bacterial diversity. Herein, the most important question is whether Paneth cells alter their secretion profiles in the situation of ionizing irradiation. On this basis, the tolerance of Paneth cells to ionizing radiation and related mechanisms by which radiation affects Paneth cell survival and death will be discussed in this review. We hope that the relevant results will be helpful in developing new approaches against radiation enteropathy. ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.Mesenchymal stem cells (MSCs) have attracted considerable attention for their activity in the treatment of refractory visual disorders. ACT001 Since MSCs were found to possess the beneficial effects by secreting paracrine factors rather than direct differentiation, MSC-derived extracellular vesicles (EVs) were widely studied in various disease models. MSCs generate abundant EVs, which act as important mediators by exchanging protein and genetic information between MSCs and target cells. It has been confirmed that MSC-derived EVs possess unique anti-inflammatory, anti-apoptotic, tissue repairing, neuroprotective, and immunomodulatory properties, similar to their parent cells. Upon intravitreal injection, MSC-derived EVs rapidly diffuse through the retina to alleviate retinal injury or inflammation. Due to possible risks associated with MSC transplantation, such as vitreous opacity and pathological proliferation, EVs appear to be a better choice for intravitreal injection. Small size EVs can pass through biological barriers easily and their contents can be modified genetically for optimal therapeutic effect. Hence, currently, they are also explored for the possibility of serving as drug delivery vehicles. In the current review, we describe the characteristics of MSC-derived EVs briefly, comprehensively summarize their biological functions in ocular diseases, and discuss their potential applications in clinical settings. ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.The treatment of neurodegenerative diseases presents a growing need for innovation in relation to recent evidence in the field of reconstructive therapy using stem cells. Understanding the molecular mechanisms underlying neurodegenerative disorders, and the advent of methods able to induce neuronal stem cell differentiation allowed to develop innovative therapeutic approaches offering the prospect of healthy and perfectly functional cell transplants, able to replace the sick ones. Hence the importance of deepening the state of the art regarding the clinical applications of advanced cell therapy products for the regeneration of nerve tissue. Besides representing a promising area of tissue transplant surgery and a great achievement in the field of neurodegenerative disease, stem cell research presents certain critical issues that need to be carefully examined from the ethical perspective. In fact, a subject so complex and not entirely explored requires a detailed scientific and ethical evaluation aimed at avoiding improper and ineffective use, rather than incorrect indications, technical inadequacies, and incongruous expectations. In fact, the clinical usefulness of stem cells will only be certain if able to provide the patient with safe, long-term and substantially more effective strategies than any other treatment available. The present paper provides an ethical assessment of tissue regeneration through mesenchymal stem cells in neurodegenerative diseases with the aim to rule out the fundamental issues related to research and clinical translation. ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.Infertility is a common medical condition encountered by health systems throughout the world. Despite the development of complex in vitro fertilization techniques, only one-third of these procedures are successful. New lab-on-a-chip systems that focus on spermatozoa selection require a better understanding of sperm behavior under ultra-confined conditions in order to improve outcomes. Experimental studies combined with models and simulations allow the evaluation of the efficiency of different lab-on-a-chip devices during the design process. In this work, we provide experimental evidence of the dynamics of sperm interacting with a lateral wall in a shallow chamber. We observe a decrease in average sperm velocity during initial wall interaction and partial recovery after the alignment of the trajectory of the cell. To describe this phenomenon, we propose a simple model for the sperm alignment process with a single free parameter. By incorporating experimental motility characterization into the model, we achieve an accurate description of the average velocity behavior of the sperm population close to walls.
Read More: https://www.selleckchem.com/products/act001-dmamcl.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team