Notes
![]() ![]() Notes - notes.io |
These results indicated that B. cereus strain Bc-cm103 had a strong suppressive effect on M. incognita and therefore could be used as a potential biocontrol agent against this pathogen.Meloidogyne enterolobii (syn. mayaguensis) is an emergent species of root-knot nematode that has become a serious threat to sweet potato (Ipomoea batatas) production in the southeastern United States. The most popular sweet potato cultivars grown in this region are highly susceptible to M. enterolobii. As a result, this pest has spread across most of the sweet potato growing counties in the Carolinas, threatening the industry as well as other crops in the region. The development and release of new sweet potato cultivars with resistance to M. enterolobii would help to manage and slow the spread of this pest. To support sweet potato resistance breeding efforts, 93 accessions selected from the U.S. Department of Agriculture germplasm collection and breeding programs in the United States were screened to identify 19 lines with strong resistance to M. enterolobii. The resistance in these accessions was tested against two M. enterolobii isolates that were collected from sweet potato production fields in the Carolinas. These isolates were found to have distinct pathotypes, with galling and nematode reproduction differences observed on cotton as well as sweet potato. This study is the first report of intraspecific pathotypic variation in M. enterolobii, and it identifies sweet potato germplasm with resistance against both pathogenic variants of this nematode.Begomoviruses infect food, fiber, and vegetable crop plants, including tomato, potato, bean, cotton, cucumber, and pumpkin, and damage many economically important crop plants worldwide. Tomato leaf curl Sudan virus (ToLCSDV) is the most widespread tomato-infecting begomovirus in Saudi Arabia. Using phage display technology, this study isolated two camel-derived nanobodies against purified ToLCSDV virions from a library of antigen-binding fragments (VHH or nanobody) of heavy-chain antibodies built from an immunized camel. The isolated nanobodies also cross-reacted with purified tomato yellow leaf curl virus virions and showed significant enzyme-linked immunosorbent assay reactivity with extracts from plants with typical begomovirus infection symptoms. The results can pave the way to developing diagnostics for begomovirus detection, design, and characterization of novel nanomaterials based on virus-like particles, in addition to nanobody-mediated begomovirus resistance in economically important crops, such as tomato, potato, and cucumber.Anthracnose is a prevalent disease of mungbean in Asian countries and Sub-Saharan Africa. It is caused by multiple Colletotrichum species. The high levels of anthracnose resistance in mungbean have not been studied in depth in India, but genetic resistance is desired. In this study, we identified the causal agent of mungbean anthracnose in two regions of India as Colletotrichum truncatum through morphological and molecular methods. A set of 296 mungbean mini-core accessions developed by WorldVeg was screened under a natural disease pressure from July to September (kharif season) in 2016, 2017, and 2018 in Hyderabad (a hot spot for anthracnose) to identify anthracnose resistance. Domatinostat mw Based on disease severity scores, 22 accessions were consistently anthracnose resistant under the categories of immune, highly resistant, and resistant with scores ranging from ≥1.0 to ≤3.0 during the period of study. Furthermore, based on the agronomic performance, anthracnose resistance in Hyderabad, and other desirable traits, a su used as potential donors in the anthracnose resistance breeding program.[Formula see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.Fire blight, caused by the bacterium Erwinia amylovora, is one of the most important diseases of apple. The antibiotic streptomycin is routinely used in the commercial apple industries of New York (NY) and New England to manage the disease. In 2002 and again, from 2011 to 2014, outbreaks of streptomycin resistance (SmR) were reported and investigated in NY. Motivated by new grower reports of control failures, we conducted a follow-up investigation of the distribution of SmR and E. amylovora strains for major apple production regions of NY over the last 6 years (2015 to 2020). Characterization of clustered regularly interspaced short palindromic repeat (CRISPR) profiles revealed that a few "cosmopolitan" strains were widely prevalent across regions, whereas many other "resident" strains were confined to one location. In addition, we uncovered novel CRISPR profile diversity in all investigated regions. SmR E. amylovora was detected only in a small area spanning two counties from 2017 to 2020 and was always associated with one CRISPR profile (412338), which matched the profile of SmR E. amylovora, discovered in 2002. This suggests the original SmR E. amylovora was never fully eradicated and went undetected because of several seasons of low disease pressure in this region. Investigation of several representative isolates under controlled greenhouse conditions indicated significant differences in aggressiveness on 'Gala' apples. Potential implications of strain differences include the propensity of strains to become distributed across wide geographic regions and associated resistance management practices. Results from this work will directly influence sustainable fire blight management recommendations for commercial apple industries in NY state and other regions.The objective of this work is to demonstrate the potential of near-infrared spectroscopy for common screening of falsified medicines in the field by means of a device-independent universal discrimination approach. In order to provide a useful discrimination tool to protect people from low-quality medical products, not only is a low-cost and portable screening device necessary, but a reference library is also essential. The authors believe that a device-dependent reference library inhibits near-infrared spectroscopy from becoming a popular screening tool. In this study, to develop a device-independent method, discrimination performance is evaluated using different devices for training and testing. The training data sets for the reference library were prepared using a bench-top Fourier transform near-infrared spectrophotometer, and predictive discrimination was performed using the spectral data by a low-cost and portable wavelength dispersive near-infrared spectrophotometer. A near-infrared spectrum-based support vector machine was used for these purposes, but the screening resulted in low accuracy thought to be caused by the intrinsically device-dependent features of the spectra data.
Here's my website: https://www.selleckchem.com/products/4sc-202.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team