Notes
Notes - notes.io |
Altogether, the current state of knowledge on the involvement of the hypothalamus in PD is profound, yet emerging methodological advances are likely to move our understanding of hypothalamic pathology in PD significantly forward.Cholinergic signaling is critical for cognitive function. The basal forebrain is the major cholinergic output of the central nervous system. Degeneration of basal forebrain cholinergic neurons is a hallmark of Alzheimer's disease (AD). Mouse models are invaluable tools in disease research and have been used to study AD for over 25 years. However, animal models of AD vary greatly with respect to the degree of cholinergic degeneration observed. The following review will outline the most influential animal models of AD with an emphasis on the basal forebrain cholinergic system.Human genes show the highest efficacy of alternative splicing (AS) in the brain as compared to other tissues. Within the brain, a remarkably rich diversity of AS events was identified in the hypothalamus. The AS frequency is increased in the aging brain. Such AS events, as intron retention and accumulation of circular RNAs, were acknowledged as some of the main hallmarks of the aging brain. In Alzheimer's disease (AD) pivotal (tau gene, in particular), risk, candidate and other genes show significant alterations in AS. Therefore AD has been suggested to be a disease of dysregulated AS. One of the reported risk factors for AD is estrogen deficiency that may interfere with the extension of neurobrillary tangles. Mounting evidence suggests that estrogens may decrease hyperphosphorylated tau deposition in the brain. Furthermore, AS of estrogen receptor α (ERα) mRNA is decreased in AD brain areas with the highest tau load. These potential interactions among tau, estrogens, and ERα AS may be important for the development of therapeutic and preventive strategies for AD. The intriguing point is that the amount of splice variants of ERα in the hypothalamus and the hippocampus is increased in aging and decreased in AD, while ERα is one of the regulators of AS and is subject to AS itself.There are complex interactions between hormones, epilepsy, and antiepileptic drugs (AEDs). While there is ample evidence that hormones influence epilepsy, it is also apparent that epileptic activity influences hormones in both women and men. In addition, AEDs may disturb endocrine function. The clinical importance of these interactions is primarily related to the effects on reproductive hormones, which is the focus of this article. Reproductive endocrine dysfunction is common among women and men with epilepsy. Menstrual disorders, polycystic ovaries, and infertility have been described among women with epilepsy, while reduced potency and sperm abnormalities have been found in men. Sexual problems and endocrine changes have been frequently described in both sexes. Epilepsy and AEDs can target a number of substrates to impact hormone levels. These include the limbic system, hypothalamus, pituitary, peripheral endocrine glands, liver, and adipose tissue. AEDs may also alter the synthesis of steroids and binding proteins, as well as hormone metabolism, and produce direct gonadal effects.The clinicoradiologic syndrome of hypothalamic hamartoma (HH) manifests with a variety of symptoms, including pharmacoresistant epilepsy with multiple seizure types, precocious puberty, behavioral disturbances, and cognitive impairment. Gelastic seizures are an early marker of epilepsy with HH in most of the cases. Despite a high variability, two major epilepsy phenotypes can be distinguished, based on electroclinical features (i) focal seizures with epigastric or déjà-vu aura, loss of consciousness, and oroalimentary or gestural automatisms suggestive of temporal lobe involvement; and (ii) motor seizures with tonic, atonic, myoclonic, or versive phenomena, suggesting frontoparietal network involvement, with possible evolution toward an epileptic encephalopathy. The underlying physiopathologic mechanisms are not completely elucidated. The well-known intrinsic epileptogenicity of the HH represents the rationale for direct HH-aiming surgical procedures, with variable success in achieving seizure freedom. The coseizures, or after a failure of the direct HH-aiming procedure.Oxytocin and vasopressin systems have been studied separately in autism spectrum disorder (ASD). Here, we provide evidence from an evolutionary and neuroscience perspective about the shared mechanisms and the common roles in regulating social behaviors. We first discuss findings on the evolutionary history of oxytocin and vasopressin ligands and receptors that highlight their common origin and clarify the evolutionary background of the crosstalk between them. Second, we conducted a comprehensive review of the increasing evidence for the role of both neuropeptides in regulating social behaviors. Third, we reviewed the growing evidence on the associations between the oxytocin/vasopressin systems and ASD, which includes oxytocin and vasopressin dysfunction in animal models of autism and in human patients, and the impact of treatments targeting the oxytocin or the vasopressin systems in children and in adults. PDGFR740YP Here, we highlight the potential of targeting the oxytocin/vasopressin systems to improve social deficits observed in ASD and the need for further investigations on how to transfer these research innovations into clinical applications.Until a few years ago, the hypothalamus was believed to play only a marginal role in schizophrenia pathophysiology. However, recent findings show that this rather small brain region involved in many pathways found disrupted-in schizophrenia. Gross anatomic abnormalities (volume changes of the third ventricle, the hypothalamus, and its individual nuclei) as well as alterations at the cellular level (circumscribed loss of neurons) can be observed. Further, increased or decreased expression of hypothalamic peptides such as oxytocin, vasopressin, several factors involved in the regulation of appetite and satiety, endogenous opiates, products of schizophrenia susceptibility genes as well as of enzymes involved in neurotransmitter and neuropeptide metabolism have been reported in schizophrenia and/or animal models of the disease. Remarkably, although profound disturbances of the hypothalamus-pituitary-adrenal axis, hypothalamus-pituitary-thyroid axis, and the hypothalamus-pituitary-gonadal axis are typical signs of schizophrenia, there is currently no evidence for alterations in the expression of hypothalamic-releasing and inhibiting factors that control these hormonal axes.
Here's my website: https://www.selleckchem.com/products/740-y-p-pdgfr-740y-p.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team