Notes
![]() ![]() Notes - notes.io |
Classification of headache disorders is dependent on a subjective self-report from patients and its interpretation by physicians. We aimed to apply objective data-driven machine learning approaches to analyze patient-reported symptoms and test the feasibility of the automated classification of headache disorders. The self-report data of 2162 patients were analyzed. Headache disorders were merged into five major entities. The patients were divided into training (n = 1286) and test (n = 876) cohorts. We trained a stacked classifier model with four layers of XGBoost classifiers. The first layer classified between migraine and others, the second layer classified between tension-type headache (TTH) and others, and the third layer classified between trigeminal autonomic cephalalgia (TAC) and others, and the fourth layer classified between epicranial and thunderclap headaches. Each layer selected different features from the self-reports by using least absolute shrinkage and selection operator. In the test cohort, our stacked classifier obtained accuracy of 81%, sensitivity of 88%, 69%, 65%, 53%, and 51%, and specificity of 95%, 55%, 46%, 48%, and 51% for migraine, TTH, TAC, epicranial headache, and thunderclap headaches, respectively. We showed that a machine-learning based approach is applicable in analyzing patient-reported questionnaires. Our result could serve as a baseline for future studies in headache research.Exercise training (ET) is recommended for lower extremity artery disease (LEAD) management. However, there is still little information on the hemodynamic and metabolic adaptations by skeletal muscle with ET. We examined whether hindlimb perfusion/vascularization and muscle energy metabolism are altered differently by three types of aerobic ET. ApoE-/- mice with LEAD were assigned to one of four groups for 4 weeks sedentary (SED), forced treadmill running (FTR), voluntary wheel running (VWR), or forced swimming (FS). Voluntary exercise capacity was improved and equally as efficient with FTR and VWR, but remained unchanged with FS. Neither ischemic hindlimb perfusion and oxygenation, nor arteriolar density and mRNA expression of arteriogenic-related genes differed between groups. Enzastaurin purchase 18FDG PET imaging revealed no difference in the steady-state levels of phosphorylated 18FDG in ischemic and non-ischemic hindlimb muscle between groups, nor was glycogen content or mRNA and protein expression of glucose metabolism-related genes in ischemic muscle modified. mRNA (but not protein) expression of lipid metabolism-related genes was upregulated across all exercise groups, particularly by non-ischemic muscle. Markers of mitochondrial content (mitochondrial DNA content and citrate synthase activity) as well as mRNA expression of mitochondrial biogenesis-related genes in muscle were not increased with ET. Contrary to FTR and VWR, swimming was ineffective in improving voluntary exercise capacity. The underlying hindlimb hemodynamics or muscle energy metabolism are unable to explain the benefits of running exercise.The current study investigated telocytes (TCs) in the intestinal bulb of Grass carp using light microscopy (LM), Transmission electron microscopy (TEM), scanning electron microscopy, and immunohistochemistry (IHC). By LM, TCs were distinguished by the typical morphological features that had a cell body and telopodes using HE, toluidine blue, methylene blue, Marsland silver stain, Grimelius's silver nitrate, Giemsa, PAS, combined AB pH2,5/PAS, Crossmon's and Mallory triple trichrome, Van Gieson stains, Verhoeff's stain, Sudan black, osmic acid, performic acid with methylene blue and bromophenol blue. TCs were identified under the epithelium as an individual cell or formed a TCs sheath. They detected in the lamina propria, between muscle fibers, around the myenteric plexus and fibrous tissue. TCs acquired immunological features of endocrine cells that exhibited high affinity for silver stain, performic acid with methylene blue, Marsland stain, and immunohistochemical staining using chromogranin A. Sub epithelial TCs were closely related to the endocrine cells. TCs and their secretory activities were recognized using acridine orange. TCs were identified by IHC using CD34, CD117, S100-protein, desmin. TCs formed a3D network that established contact with macrophage, mast cells, dendritic cells, lymphocytes, smooth muscle fibers, fibroblast, Schwann cells and nerve fibers. In conclusion, the localization of TCs in relation to different types of immune cells indicated their potential role in the maintenance of intestinal immunity.X-ray and gamma-ray imaging are technologies with several applications in nuclear medicine, homeland security, and high-energy astrophysics. However, it is generally difficult to realize simultaneous wide-band imaging ranging from a few tens of keV to MeV because different interactions between photons and the detector material occur, depending on the photon energies. For instance, photoabsorption occurs below 100 keV, whereas Compton scattering dominates above a few hundreds of keV. Moreover, radioactive sources generally emit both X-ray and gamma-ray photons. In this study, we develop a "hybrid" Compton camera that can simultaneously achieve X-ray and gamma-ray imaging by combining features of "Compton" and "pinhole" cameras in a single detector system. Similar to conventional Compton cameras, the detector consists of two layers of scintillator arrays with the forward layer acting as a scatterer for high-energy photons (> 200 keV) and an active pinhole for low-energy photons ( less then 200 keV). The experimental results on the performance of the hybrid camera were consistent with those from the Geant4 simulation. We simultaneously imaged [Formula see text]Am (60 keV) and [Formula see text]Cs (662 keV) in the same field of view, achieving an angular resolution of 10[Formula see text] (FWHM) for both sources. In addition, imaging of [Formula see text]At was conducted for the application in future nuclear medicine, particularly radionuclide therapy. The initial demonstrative images of the [Formula see text]At phantom were reconstructed using the pinhole mode (using 79 keV) and Compton mode (using 570 keV), exhibiting significant similarities in source-position localization. We also verified that a mouse injected with 1 MBq of [Formula see text]At can be imaged via pinhole-mode measurement in an hour.
Read More: https://www.selleckchem.com/products/Enzastaurin.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team