NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Figuring out their bond between emotional intelligence as well as sociable level of sensitivity with quality of work life in nurse practitioners.
Quantification of optical absorption gaps in nailfold capillaries has recently shown promise as a non-invasive technique for neutropenia screening. Here we demonstrate a low-cost, portable attachment to a mobile phone that can resolve optical absorption gaps in nailfold capillaries using a reverse lens technique and oblique 520nm illumination. Resolution less then 4μm within a 1mm2 on-axis region is demonstrated, and wide field of view (3.5mm × 4.8mm) imaging is achieved with resolution less then 6μm in the periphery. Optical absorption gaps (OAGs) are visible in superficial capillary loops of a healthy human participant by an ∼8-fold difference in contrast-to-noise ratio with respect to red blood cell absorption contrast. High speed video capillaroscopy up to 240 frames per second (fps) is possible, though 60fps is sufficient to resolve an average frequency of 37 OAGs/minute passing through nailfold capillaries. The simplicity and portability of this technique may enable the development of an effective non-invasive tool for white blood cell screening in point-of-care and global health settings. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.In view of minimally-invasive clinical interventions, laser tissue soldering assisted by plasmonic nanoparticles is emerging as an appealing concept in surgical medicine, holding the promise of surgeries without sutures. Rigorous monitoring of the plasmonically-heated solder and the underlying tissue is crucial for optimizing the soldering bonding strength and minimizing the photothermal damage. To this end, we propose a non-invasive, non-contact, and non-ionizing modality for monitoring nanoparticle-assisted laser-tissue interaction and visualizing the localized photothermal damage, by taking advantage of the unique sensitivity of terahertz radiation to the hydration level of biological tissue. We demonstrate that terahertz radiation can be employed as a versatile tool to reveal the thermally-affected evolution in tissue, and to quantitatively characterize the photothermal damage induced by nanoparticle-assisted laser tissue soldering in three dimensions. Our approach can be easily extended and applied across a broad range of clinical applications involving laser-tissue interaction, such as laser ablation and photothermal therapies. 740 Y-P purchase © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.A crucial issue in the development of therapies to treat pathologies of the central nervous system is represented by the availability of non-invasive methods to study the three-dimensional morphology of spinal cord, with a resolution able to characterize its complex vascular and neuronal organization. X-ray phase contrast micro-tomography enables a high-quality, 3D visualization of both the vascular and neuronal network simultaneously without the need of contrast agents, destructive sample preparations or sectioning. Until now, high resolution investigations of the post-mortem spinal cord in murine models have mostly been performed in spinal cords removed from the spinal canal. We present here post-mortem phase contrast micro-tomography images reconstructed using advanced computational tools to obtain high-resolution and high-contrast 3D images of the fixed spinal cord without removing the bones and preserving the richness of micro-details available when measuring exposed spinal cords. We believe that it represents a significant step toward the in-vivo application. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.In infrared neural stimulation (INS), laser-evoked thermal transients are used to generate small depolarising currents in neurons. The laser exposure poses a moderate risk of thermal damage to the target neuron. Indeed, exogenous methods of neural stimulation often place the target neurons under stressful non-physiological conditions, which can hinder ordinary neuronal function and hasten cell death. Therefore, quantifying the exposure-dependent probability of neuronal damage is essential for identifying safe operating limits of INS and other interventions for therapeutic and prosthetic use. Using patch-clamp recordings in isolated spiral ganglion neurons, we describe a method for determining the dose-dependent damage probabilities of individual neurons in response to both acute and cumulative infrared exposure parameters based on changes in injection current. The results identify a local thermal damage threshold at approximately 60 °C, which is in keeping with previous literature and supports the claim that damage during INS is a purely thermal phenomenon. In principle this method can be applied to any potentially injurious stimuli, allowing for the calculation of a wide range of dose-dependent neural damage probabilities. Unlike histological analyses, the technique is well-suited to quantifying gradual neuronal damage, and critical threshold behaviour is not required. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.We propose a line-field quantitative phase-imaging flow cytometer for analyzing large populations of label-free cells. Hydrodynamical focusing brings cells into the focus plane of an optical system while diluting the cell suspension, resulting in decreased throughput rate. To overcome the trade-off between throughput rate and in-focus imaging, our cytometer involves digitally extending the depth-of-focus on loosely hydrodynamically focusing cell suspensions. The cells outside the depth-of-focus range in the 70-µm diameter of the core flow were automatically digitally refocused after image acquisition. We verified that refocusing was successful with our cytometer through statistical analysis of image quality before and after digital refocusing. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.An ultralow level light detection module, the time-correlated photon counter, is proposed and evaluated for fluorescence analysis. The time-correlated photon counter employs a silicon photomultiplier as a photon counting sensor in conjunction with a Poisson statistics algorithm and a double time windows technique, and therefore it can accurately count the photon number. The time-correlated photon counter is compatible with the time-correlated single photon counting technique and can record the arrival time of very faint light signals. This low-cost and compact instrument was used to analyze the intensity and lifetime of fluorescein isothiocyanate; a limit of detection of 16 pg/ml with a large linear dynamic range from 2.86 pg/ml to 0.5 µg/ml was obtained, and the lifetime of fluorescein isothiocyanate was measured to be 3.758 ns, which agrees well with the results of a sophisticated commercial fluorescence analysis instrument. The time-correlated photon counter may be useful in applications such as point-of-care testing.
Here's my website: https://www.selleckchem.com/products/740-y-p-pdgfr-740y-p.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.