Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
All investigated dural sealants and hemostatic agents were distinguishable from the surrounding tissue on MR images with different appearances on the MR sequences. A detailed atlas for the identification of the materials in postoperative spine MRI was established.
Commonly used hemostatic agents and dural sealants can be successfully identified on early postoperative spine MRI.
Knowledge about MRI appearances of commonly used adjunct surgical materials helps in interpretation of postoperative imaging and supports clinical decision making.
Knowledge about MRI appearances of commonly used adjunct surgical materials helps in interpretation of postoperative imaging and supports clinical decision making.
In China, OXA-48-producing Enterobacterales have been identified sporadically, causing small-scale regional outbreaks. This study investigated the molecular epidemiology, transmission and evolution of OXA-48-producing Enterobacterales and pOXA48 from mainland China.
We conducted a multicentre resistance monitoring project from 2013-2018. Genome sequencing of OXA-48-produicng isolates was performed. SNPs were analysed. Eleven isolates were selected for subsequent SMRT sequencing. Genome sequences were annotated, and alignment of the complete sequences of bla
-carrying plasmids from a subset of isolates that underwent long-read sequencing was performed.
In total, 41 OXA-48-producing Enterobacterales were included in this study (34 Klebsiella pneumoniae, 3 Escherichia coli, 3 Enterobacter cloacae complex and 1 Klebsiella oxytoca). OXA-48-produicng K. pneumoniae (OXAKp) ST383, ST147 and ST11 caused outbreaks of different scales in our hospital. OXA-48-producing E. coli ST156 and ST648, E. cloacae complex Snt clone exhibited high compatibility and strong integration ability with foreign resistance plasmids.
The emergence of colistin-resistant Klebsiella pneumoniae (CoRKp) is a serious public health issue because colistin is the last line of defense against infections caused by multidrug-resistant Gram-negative bacteria. Here, we generated a draft genome sequence for CoRKp strain P094-1, isolated from a sputum sample from an infected patient.
Whole genomic DNA of strain P094-1 was sequenced using the Pacific Biosciences platform. The generated reads were de novo assembled with Hierarchical Genome Assembly Process version 3.0. Bromoenol lactone chemical structure The colistin resistance-related genes were predicted from the genome sequence and validaed by experiments.
The genome lacked a 20.3-kb region, including the complete deletion of mgrB. Molecular and genome sequencing-based analyses revealed that the observed colistin resistance of P094-1 could not be attributed to plasmid-borne mcr-1 to mcr-9 genes or to alteration of the pmr and pho operons (deletions, insertions, or substitutions), but was conferred by an insertion sequence 1 (IS1)-induced total deletion of mgrB.
This is the first reported whole-genome sequence of an unusual CoRKp isolate containing an IS1-induced deletion of mgrB.
This is the first reported whole-genome sequence of an unusual CoRKp isolate containing an IS1-induced deletion of mgrB.
The emergence of carbapenem-resistant Pseudomonas aeruginosa has become a serious worldwide medical problem. The aim of this study was to determine the genetic and epidemiological properties of carbapenem-resistant P. aeruginosa strains isolated from hospitals in Nepal.
A total of 43 carbapenem-resistant P. aeruginosa isolates obtained from patients in two hospitals in Nepal between 2018 and 2020 were analysed. Their whole genomes were sequenced by next-generation sequencing. A phylogenetic tree was constructed from single nucleotide polymorphism (SNP) concatemers. Multilocus sequence typing (MLST) was performed and antimicrobial resistance genes were identified.
Of the 43 isolates, 17 harboured genes encoding carbapenemases, including IMP-1, IMP-26, KPC-2, NDM-1, VIM-2 and VIM-5, and 12 harboured genes encoding 16S rRNA methylases, including RmtB4 and RmtF2. The carbapenem-resistant P. aeruginosa isolated in Nepal belonged to various sequence types (STs), including ST235 (5 isolates), ST244 (7 isolates), ST274 (1 isolate), ST357 (10 isolates), ST654 (3 isolates), ST664 (1 isolate), ST773 (1 isolate), ST823 (3 isolates), ST1047 (8 isolates), ST1203 (2 isolates) and ST3453 (2 isolates).
To the best of our knowledge, this is the first molecular epidemiological analysis of carbapenem-resistant P. aeruginosa clinical isolates from Nepal. The findings strongly suggest that P. aeruginosa isolates producing carbapenemases and 16S rRNA methylases have spread throughout medical settings in Nepal.
To the best of our knowledge, this is the first molecular epidemiological analysis of carbapenem-resistant P. aeruginosa clinical isolates from Nepal. The findings strongly suggest that P. aeruginosa isolates producing carbapenemases and 16S rRNA methylases have spread throughout medical settings in Nepal.
The prevalence of carbapenem-resistant Enterobacterales (CRE) has increased rapidly worldwide in the last two decades. CRE infection poses a huge challenge for today's clinical therapy. Rapid and accurate detection of clinical CRE isolates can avoid inappropriate antimicrobial treatment and reduce mortality. However, existing detection methods are either time consuming, expensive or inaccurate, making them unable to fully meet clinical demands. In this study, the HB&L system was designed to distinguish CRE from carbapenem-susceptible Enterobacterales (CSE), as it can accelerate the growth of bacteria, detect both carbapenemase-producing CRE (CP-CRE) and non-CP-CRE isolates in real time, and provide time-kill curves.
The broth microdilution method and PCR and sequencing were used as the reference methods to identify CRE and carbapenemase-producing Enterobacterales (CPE) isolates, respectively. Three methods for detecting CRE isolates, including the Carba NP test, modified carbapenem inactivation method (mCIM) and HB&L system, were evaluated.
The accuracy of the HB&L system was extremely high with 100% sensitivity and 96.0% specificity at only 6 h of culture time for detecting CRE. Time-kill curves may provide information on effective treatment options for clinicians. This system is superior to the mCIM (20-24 h detection time; 90.6% sensitivity and 96.6% specificity) and Carba NP test (2 h detection time; 85.2% sensitivity and 98.4% specificity), which are only designed to detect CP-CRE.
The HB&L system is promising for wide application for detection of clinical CRE in hospitals.
The HB&L system is promising for wide application for detection of clinical CRE in hospitals.
Website: https://www.selleckchem.com/products/bromoenol-lactone.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team