Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Effective therapeutic targets for triple-negative breast cancer (TNBC), a special type of breast cancer (BC) with rapid metastasis and poor prognosis, are lacking, especially for patients with chemotherapy resistance. Peptide 17 inhibitor Decitabine (DCA) is a Food and Drug Administration-approved DNA methyltransferase inhibitor that has been proven effective for the treatment of tumors. However, its antitumor effect in cancer cells is limited by multidrug resistance. Cancer stem cells (CSCs), which are thought to act as seeds during tumor formation, regulate tumorigenesis, metastasis, and drug resistance through complex signaling. Our previous study found that miR-155 is upregulated in BC, but whether and how miR-155 regulates DCA resistance is unclear. In this study, we demonstrated that miR-155 was upregulated in CD24- CD44+ BC stem cells (BCSCs). In addition, the overexpression of miR-155 increased the number of CD24- CD44+ CSCs, DCA resistance and tumor clone formation in MDA-231 and BT-549 BC cells, and knockdown of miR-155 inhibited DCA resistance and stemness in BCSCs in vitro. Moreover, miR-155 induced stemness and DCA resistance by inhibiting the direct target gene tetraspanin-5 (TSPAN5). We further confirmed that overexpression of TSPAN5 abrogated the effect of miR-155 in promoting stemness and DCA resistance in BC cells. Our data show that miR-155 increases stemness and DCA resistance in BC cells by targeting TSPAN5. These data provide a therapeutic strategy and mechanistic basis for future possible clinical applications targeting the miR-155/TSPAN5 signaling axis in the treatment of TNBC. © 2020 Wiley Periodicals, Inc.Extrafloral nectaries are a defence trait that plays important roles in plant-animal interactions. Gossypium species are characterized by cellular grooves in leaf midribs that secret large amounts of nectar. Here, with a panel of 215 G. arboreum accessions, we compared extrafloral nectaries to nectariless accessions to identify a region of Chr12 that showed strong differentiation and overlapped with signals from GWAS of nectaries. Fine mapping of an F2 population identified GaNEC1, encoding a PB1 domain-containing protein, as a positive regulator of nectary formation. An InDel, encoding a five amino acid deletion, together with a nonsynonymous substitution, was predicted to cause 3D structural changes in GaNEC1 protein that could confer the nectariless phenotype. mRNA-Seq analysis showed that JA-related genes are up-regulated and cell wall-related genes are down-regulated in the nectary. Silencing of GaNEC1 led to a smaller size of foliar nectary phenotype. Metabolomics analysis identified more than 400 metabolites in nectar, including expected saccharides and amino acids. The identification of GaNEC1 helps establish the network regulating nectary formation and nectar secretion, and has implications for understanding the production of secondary metabolites in nectar. Our results will deepen our understanding of plant-mutualism co-evolution and interactions, and will enable utilization of a plant defence trait in cotton breeding efforts. © 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.PURPOSE Seasonality is an important factor in children's physical activity (PA) and sedentary behavior (SB); thus, the aim of this study was to explore the seasonal characteristics of Chinese preschool children's PA and SB. METHOD Preschool children (n = 65) from a kindergarten middle class in Changsha, the capital city of Hunan Province in Central China, were recruited, and a three-axis accelerometer (ActiGraph GT3X-BT) was used to longitudinally track their PA and SB status. One-way repeated-measures ANOVA (Analysis of Variance) and Friedman tests were employed for analysis, with significance set at P less then .05. RESULTS The levels of both total of physical activity and moderate-to-vigorous physical activity were the highest in spring and the lowest in winter. The level of SB was the opposite, being the lowest in spring and the highest in winter, whereas there were no significant differences in light physical activity across different seasons. The seasonality of PA in preschool children may be influenced by several factors, such as gender, time period, preschool education curriculum, and weather conditions. CONCLUSIONS Seasonal variation in PA and SB are considered important for child educators, who should combine related factors to construct potentially ideal interventions to promote the PA of children during different seasons. © 2020 Wiley Periodicals, Inc.Mycobacteria use type VII secretion systems (T7SSs) to translocate a wide range of proteins across their diderm cell envelope. These systems, also called ESX systems, are crucial for the viability and/or virulence of mycobacterial pathogens, including Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. We have previously shown that the M. tuberculosis ESX-5 system is unable to fully complement secretion in an M. marinum esx-5 mutant, suggesting species specificity in secretion. In this study, we elaborated on this observation and established that the membrane ATPase EccC5 , possessing four (putative) nucleotide-binding domains (NBDs), is responsible for this. By creating M. marinum-M. tuberculosis EccC5 chimeras, we observed both in M. marinum and in M. tuberculosis that secretion specificity of PE_PGRS proteins depends on the presence of the cognate linker 2 domain of EccC5 . This region connects NBD1 and NBD2 of EccC5 and is responsible for keeping NBD1 in an inhibited state. Notably, the ESX-5 substrate EsxN, predicted to bind to NBD3 on EccC5 , showed a distinct secretion profile. These results indicate that linker 2 is involved in species-specific substrate recognition and might therefore be an additional substrate recognition site of EccC5 . © 2020 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.Creating true-breeding lines is a critical step in plant breeding. Novel, completely homozygous true-breeding lines can be generated by doubled haploid technology in single generation. Haploid induction through modification of the centromere-specific histone 3 variant (CENH3), including chimeric proteins, expression of non-native CENH3 and single amino acid substitutions, has been shown to induce, on outcrossing to wild type, haploid progeny possessing only the genome of the wild-type parent, in Arabidopsis thaliana. Here, we report the characterization of 31 additional EMS-inducible amino acid substitutions in CENH3 for their ability to complement a knockout in the endogenous CENH3 gene and induce haploid progeny when pollinated by the wild type. We also tested the effect of double amino acid changes, which might be generated through a second round of EMS mutagenesis. Finally, we report on the effects of CRISPR/Cas9-mediated in-frame deletions in the αN helix of the CENH3 histone fold domain. Remarkably, we found that complete deletion of the αN helix, which is conserved throughout angiosperms, results in plants which exhibit normal growth and fertility while acting as excellent haploid inducers when pollinated by wild-type pollen.
Here's my website: https://www.selleckchem.com/products/yap-tead-inhibitor-1-peptide-17.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team