Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Applications in Plant Sciences is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.Premise A novel set of microsatellite markers was developed for Juglans sigillata (Juglandaceae), an endemic walnut species in southwestern China, to facilitate cultivar identification and future investigations into the genetic structure and domestication history of this species and its close relatives. Methods and Results We developed 32 microsatellite loci for J. sigillata using genomic data and used them to examine 60 individuals from three natural populations. A high level of polymorphism was detected by these primers, with up to eight alleles observed per locus, and an average of four alleles across populations. The levels of observed and expected heterozygosity ranged from 0.000-1.000 and 0.000-0.785, respectively. All but two of the loci were also successfully amplified in three closely related Eurasian Juglans species (J. regia, J. Selonsertib mw cathayensis, and J. mandshurica). Conclusions The microsatellite loci identified here provide a powerful resource for examining the genetic structure and domestication history of Juglans, as well as identification of its cultivars. © 2020 Xu et al. Applications in Plant Sciences is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.Premise Polymorphic microsatellite markers were developed to study genetic diversity and genetic structure of populations of the locally endangered species Tofieldia calyculata (Tofieldiaceae). Methods and Results Nineteen polymorphic microsatellite loci were developed using DNA-enriched libraries sequenced by Ilumina technology and were then used to genotype 101 individuals from five populations from Austria, Slovakia, Poland, and the Czech Republic. Of the markers tested, 68% were polymorphic in four of the five investigated populations, with one marker polymorphic in all populations. The number of alleles per locus in the populations ranged from one to 11. Levels of observed and expected heterozygosity ranged from 0.00 to 0.75 and from 0.00 to 0.84, respectively. Moreover, six of the 19 loci amplified when tested in the congeneric species T. pusilla. Conclusions The 19 newly developed microsatellite markers can be used to describe genetic diversity and population structure of populations of T. calyculata. © 2020 Vlasta et al. Applications in Plant Sciences is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.An emerging approach to ecosystem monitoring involves the use of physiological biomarker analyses in combination with gene transcription assays. For the first time, we employed these tools to evaluate the Pacific razor clam (Siliqua patula), which is important both economically and ecologically, as a bioindicator species in the northeast Pacific. Our objectives were to (1) develop biomarker and gene transcription assays with which to monitor the health of the Pacific razor clam, (2) acquire baseline biomarker and gene transcription reference ranges for razor clams, (3) assess the relationship between physiological and gene transcription assays and (4) determine if site-level differences were present. Pacific razor clams were collected in July 2015 and 2016 at three sites within each of two national parks in southcentral Alaska. In addition to determining reference ranges, we found differences in biomarker assay and gene transcription results between parks and sites which indicate variation in both large-scale and local environmental conditions. Our intent is to employ these methods to evaluate Pacific razor clams as a bioindicator of nearshore ecosystem health. Links between the results of the biomarker and gene transcription assays were observed that support the applicability of both assays in ecosystem monitoring. However, we recognize the need for controlled studies to examine the range of responses in physiology and gene transcripts to different stressors. © 2020 Bowen et al.Insulin-stimulated glucose transport is a characteristic property of adipocytes and muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-containing vesicles from intracellular stores to the cell surface. Fusion of these vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an attempt to overcome some of the limitations associated with both primary and cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4 (HA-GLUT4-GFP) in HeLa cells. Here we report the characterisation of this system compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of HA-GLUT4-GFP to the surface of both cell types with similar kinetics using orthologous trafficking machinery. While the magnitude of the insulin-stimulated translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a useful, experimentally tractable, human model system. Here, we exemplify their utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential novel regulators of GLUT4 trafficking in human cells. © 2020 Morris et al.Aims To identify the common and specific molecular mechanisms of three well-defined subtypes of endometriosis (EMs) ovarian endometriosis (OE), peritoneal endometriosis (PE), and deep infiltrating endometriosis (DIE). Methods Four microarray datasets GSE7305 and GSE7307 for OE, E-MTAB-694 for PE, and GSE25628 for DIE were downloaded from public databases and conducted to compare ectopic lesions (EC) with eutopic endometrium (EU) from EMs patients. Differentially expressed genes (DEGs) identified by limma package were divided into two parts common DEGs among three subtypes and specific DEGs in each subtype, both of which were subsequently performed with the Kyoto Encyclopedia of Genes (KEGG) pathway enrichment analysis. The protein-protein interaction (PPI) network was constructed by common DEGs and five hub genes were screened out from the PPI network. Besides, these five hub genes together with selected interested pathway-related genes were further validated in an independent OE RNA-sequencing dataset GSE105764.
Read More: https://www.selleckchem.com/products/selonsertib-gs-4997.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team