Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
In the niches that Staphylococcus aureus and Pseudomonas aeruginosa coinhabit, the later pathogen produces phenazine antibiotics to inhibit the growth of S. aureus. Recently, a group of halogenated phenazines (HPs) has been shown to have potent antimicrobial activities against Staphylococci; however, no HP-resistant mutant has been reported. PHI-101 solubility dmso Here, we demonstrate that S. aureus develops HP-resistance via single amino acid change (Arg116Cys) in a transcriptional repressor TetR21. RNA-seq analysis showed that the TetR21R116C variation caused drastic up-regulation of an adjacent gene hprS (halogenated phenazine resistance protein of S. aureus). Deletion of the hprS in the TetR21R116C background restored bacterial susceptibility to HP, while hprS overexpression in S. aureus conferred HP-resistance. The expression of HprS is under tight transcriptional control of the TetR21 via direct binding to the promoter region of hprS. The R116C mutation in TetR21 significantly reduced its DNA binding affinity. Moreover, natural phenazine antibiotics (phenazine-1-carboxylic acid and pyocyanin) and a HP analog (HP-22) are ligands for the TetR21, regulating its repressor activity. Combining homology analysis and LC-MS/MS assay we demonstrated that HprS is a phenazine efflux pump. To the best of our knowledge, we provide the first report of phenazine efflux pump in S. aureus. Interestingly, the TetR21R116C variation has been found in some clinical S. aureus isolates, and a laboratory strain of S. aureus with TetR21R116C variation showed enhanced growth competitiveness toward P. aeruginosa and promoted coinfection with P. aeruginosa in the host environment, demonstrating significance of the mutation in host infections.The activity of electrocatalysts can be improved by modifying their electronic structures and surface morphologies. In electrochemical reactions with gas evolution, the performance of an electrocatalyst is also affected by how easily gas bubbles depart from an electrocatalyst surface. However, it is difficult to quantitatively estimate the improvement in the performance that can be achieved by promoting the departure of gas bubbles from the electrocatalyst surface. This study investigated the effect of surface hydrophilicity on the hydrogen evolution reaction (HER). The water contact angles of the nickel phosphorous (NiP) films were controlled from 40.3 to 77.2° with imperceptible differences in their intrinsic electronic structures and surface areas. Electrochemical analyses and in situ visualization of the gas evolution on the NiP films indicated that an increase in the hydrophilicity of the electrocatalysts reduced the size of gas bubbles formed on the NiP films and shortened the duration of the bubbles' stay on the NiP surface. A faster gas departure enabled continuous participation of the electrocatalyst surface in hydrogen evolution, leading to a stable electrochemical behavior of the electrocatalyst and a decrease in the overpotential at a given current density. A full-cell test revealed that the enhancement of hydrogen bubble departure on a hydrophilic NiP surface with a contact angle of 40.3° reduced the overpotential by 134 mV at a current density of 100 mA/cm2 compared to a more hydrophobic film with a contact angle of 77.2°.Soft actuators and microrobots that can move spontaneously and continuously without artificial energy supply and intervention have great potential in industrial, environmental, and military applications, but still remain a challenge. Here, a bioinspired MXene-based bimorph actuator with an asymmetric layered microstructure is reported, which can harness natural sunlight to achieve directional self-locomotion. We fabricate a freestanding MXene film with an increased and asymmetric layered microstructure through the graft of coupling agents into the MXene nanosheets. Owing to the excellent photothermal effect of MXene nanosheets, increased interlayer spacing favoring intercalation/deintercalation of water molecules and its caused reversible volume change, and the asymmetric microstructure, this film exhibits light-driven deformation with a macroscopic and fast response. Based on it, a soft bimorph actuator with ultrahigh response to solar energy is fabricated, showing natural sunlight-driven actuation with ultralarge amplitude and fast response (346° in 1 s). By utilizing continuous bending deformation of the bimorph actuator in response to the change of natural sunlight intensity and biomimetic design of an inchworm to rectify the repeated bending deformation, an inchwormlike soft robot is constructed, achieving directional self-locomotion without any artificial energy and control. Moreover, soft arms for lifting objects driven by natural sunlight and wearable smart ornaments that are combined with clothing and produce three-dimensional deformation under natural sunlight are also developed. These results provide a strategy for developing natural sunlight-driven soft actuators and reveal great application prospects of this photoactuator in sunlight-driven soft biomimetic robots, intelligent solar-energy-driven devices in space, and wearable clothing.The ubiquinone reduction step in NADH-ubiquinone oxidoreductase (complex I) is the key to triggering proton translocation in its membrane part. Although the existence of a long and narrow quinone-access channel has been identified, it remains debatable whether the channel model can account for binding of various ligands (ubiquinones and inhibitors) to the enzyme. We previously proposed that the matrix-side interfacial region of the 49 kDa, ND1, PSST, and 39 kDa subunits, which is covered by a loop connecting transmembrane helices (TMHs) 1 and 2 of ND3, may be the area for entry of some bulky ligands into the quinone reaction cavity. However, this proposition lacks direct evidence that the cavity is accessible from the putative matrix-side region, which allows ligands to pass. To address this, we examined whether Cys39 of ND3 and Asp160 of 49 kDa can be specifically cross-linked by bifunctional cross-linkers (tetrazine-maleimide hybrid, named TMBC). On the basis of the structural models of complex I, such dual cross-linking is unexpected because ND3 Cys39 and 49 kDa Asp160 are located on the TMH1-2 loop and deep inside the channel, respectively, and hence, they are physically separated by peptide chains forming the channel wall.
Homepage: https://www.selleckchem.com/products/phi-101.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team