Notes
![]() ![]() Notes - notes.io |
Respondent driven sampling (RDS) is a sampling method designed for hard-to-sample groups with strong social ties. RDS starts with a small number of arbitrarily selected participants ("seeds"). Seeds are issued recruitment coupons, which are used to recruit from their social networks. Waves of recruitment and data collection continue until reaching a sufficient sample size. Under the assumptions of random recruitment, with-replacement sampling, and a sufficient number of waves, the probability of selection for each participant converges to be proportional to their network size. With recruitment noncooperation, however, recruitment can end abruptly, causing operational difficulties with unstable sample sizes. Noncooperation may void the recruitment Markovian assumptions, leading to selection bias. Here, we consider two RDS studies one targeting Korean immigrants in Los Angeles and in Michigan; and another study targeting persons who inject drugs in Southeast Michigan. We explore predictors of coupon redemption, associations between recruiter and recruits, and details within recruitment dynamics. While no consistent predictors of noncooperation were found, there was evidence that coupon redemption of targeted recruits was more common among those who shared social bonds with their recruiters, suggesting that noncooperation is more likely to be a feature of recruits not cooperating, rather than recruiters failing to distribute coupons.This paper looks at how Macao, the world's most densely populated city, deals with the COVID-19 disease, with a focus on government interventions and responses of the gaming concessionaires who operate integrated resorts. mTOR phosphorylation Macao was selected as the case not only because of the background of the authors, but also because Macao has been cited in many media coverage as a "good practice" example when it comes to fighting against this COVID-19 pandemic situation. Since there are already ample of articles on the background, development timeline, and overall commentary, this paper adopts a mixed approach by combining supplementary secondary data on the COVID-19 timeline in Macao (focusing on government interventions that can affect the tourism and hospitality industry) and primary qualitative in-depth interviews with senior management personnel (holding positions of Director or above) from major integrated resorts in Macao to get insights on industry strategic responses and expectation on future. A total of seven interviews were conducted with senior management members of five integrated resorts in May 2020. Four areas of responses were identified. They are 1. Survival; 2. The New Business Norm; 3. Business Rebound Strategies and 4. Corporate Social Responsibility (CSR). The findings indicate a seemingly utopian scenario among the major integrated resorts and gaming concessionaires in Macao towards their compliance and autonomous actions. The mechanism of this utopian-like scenario is explained by adopting the neo-institutional theory.Assessment of computed tomography (CT) images can be complex due to a number of dependencies that affect system performance. In particular, it is well-known that noise in CT is object-dependent. Such object-dependence can be more pronounced and extend to resolution and image textures with the increasing adoption of model-based reconstruction and processing with machine learning methods. Moreover, such processing is often inherently nonlinear complicating assessments with simple measures of spatial resolution, etc. Similarly, recent advances in CT system design have attempted to improve fine resolution details - e.g., with newer detectors, smaller focal spots, etc. Recognizing these trends, there is a greater need for imaging assessment that are considering specific features of interest that can be placed within an anthropomorphic phantom for realistic emulation and evaluation. In this work, we devise a methodology for 3D-printing phantom inserts using procedural texture generation for evaluation of performance of high-resolution CT systems. Accurate representations of texture have previously been a hindrance to adoption of processing methods like model-based reconstruction, and texture serves as an important diagnostic feature (e.g. heterogeneity of lesions is a marker for malignancy). We consider the ability of different systems to reproduce various textures (as a function of the intrinsic feature sizes of the texture), comparing microCT, cone-beam CT, and diagnostic CT using normal- and high-resolution modes. We expect that this general methodology will provide a pathway for repeatable and robust assessments of different imaging systems and processing methods.Model-based material decomposition (MBMD) directly estimates the material densities from the spectral CT data and has found opportunities for dose reduction via physical and statistical modeling and advanced regularization. However, image properties such as spatial resolution, noise, and cross-basis response in the context of material decomposition are dependent on regularization, and high-dimensional exhaustive sweeping of regularization parameters is suboptimal. In this work, we proposed a set of prediction tools for generalized local impulse response (LIR) that characterizes both in-basis spatial resolution and cross-basis response, and noise correlation prospectively. The accuracy of noise predictor was validated in a simulation study, comparing predicted and measured in- and cross-basis noise correlations. Employing these predictors, we composed a specialized regularization for cross-talk reduction and showed that such prediction tools are promising for task-based optimization in spectral CT applications.In this paper, the problem of mining complex temporal patterns in the context of multivariate time series is considered. A new method called the Fast Temporal Pattern Mining with Extended Vertical Lists is introduced. The method is based on an extension of the level-wise property, which requires a more complex pattern to start at positions within a record where all of the subpatterns of the pattern start. The approach is built around a novel data structure called the Extended Vertical List that tracks positions of the first state of the pattern inside records and links them to appropriate positions of a specific subpattern of the pattern called the prefix. Extensive computational results indicate that the new method performs significantly faster than the previous version of the algorithm for Temporal Pattern Mining; however, the increase in speed comes at the expense of increased memory usage.
My Website: https://www.selleckchem.com/mTOR.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team