Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Electronegativity equalization is examined after understanding an atom-in-a-molecule as an open quantum system, characterized by a variable fluctuating number of electrons whose average is set through charge-constrained electronic structure calculations. It is shown that actual results in toy systems can be easily modeled through electron distribution functions, and that by doing so several conflicting interpretations converge onto a common formalism.
Nutritional interventions are promising tools for the prevention of obesity. The n-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) docosahexaenoic acid (DHA) modulates immune and metabolic responses while the antioxidant hydroxytyrosol (HT) prevents oxidative stress (OS) in white adipose tissue (WAT).
The DHA plus HT combined protocol prevents WAT alterations induced by a high-fat diet in mice. Main related mechanisms.
Male C57BL/6J mice were fed a control diet (CD; 10% fat, 20% protein, and 70% carbohydrates) or a high fat diet (HFD) (60% fat, 20% protein, and 20% carbohydrates) for 12 weeks, without and with supplementation of DHA (50 mg kg-1 day-1), HT (5 mg kg-1 day-1) or both. Measurements of WAT metabolism include morphological parameters, DHA content in phospholipids (gas chromatography), lipogenesis, OS and inflammation markers, mitochondrial activity and gene expression of transcription factors SREBP-1c, PPAR-γ, NF-κB (p65) and Nrf2 (quantitative polymerase chain reaction and enzyme-linked immunosorbent assay).
The combined DHA and HT intervention attenuated obesity development, suppressing the HFD-induced inflammatory and lipogenic signals, increasing antioxidant defenses, and maintaining the phospholipid LCPUFA n-3 content and mitochondrial function in WAT. At the systemic level, the combined intervention also improved the regulation of glucose and adipokine homeostasis.
The combined DHA and HT protocol appears to be an important nutritional strategy for the treatment of metabolic diseases, with abrogation of obesity-driven metabolic inflammation and recovery of a small-healthy adipocyte phenotype.
The combined DHA and HT protocol appears to be an important nutritional strategy for the treatment of metabolic diseases, with abrogation of obesity-driven metabolic inflammation and recovery of a small-healthy adipocyte phenotype.Transition-metal oxides with low valence states are promising candidates as anodes for advanced rechargeable Li-ion batteries. Surprisingly, the capacities of such anode materials initially decrease and then increase after long-term cycling. Herein, MnO is selected as a representative material to study the structure-function relationship and elucidate the above-mentioned phenomena during long-term cycling. To this end, the surface reconstruction to bulk transformation of MnO anode materials during the cycling procedures has been revealed. The atomic scanning transmission electron microscopy images and theoretical modeling results illustrate the formation of stable surface-phase Mn3O4 and Li2MnO4, which promote the migration of Li ions. The complete bulk-phase transformation of MnO is then revealed, during which Mn2+ was found to be initially oxidized to Mn4+ and subsequently reduced to a mixed valence of Mn2+ and Mn3+, correlating with the tendency of their discharge capacity variation upon cycling. These direct atomic-scale observations of the migration behavior of Li ions in the MnO anode offer an essential step toward understanding the electrochemical performance evolution of transition-metal oxide anodes and guide the anode preparation for Li-ion batteries.Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health. However, the toxicity of antibiotics on aquatic organisms, especially the effects on the detoxification system and immune system, has not been thoroughly studied. Lycopene (LYC) is a naturally occurring hydrocarbon carotenoid, which has received extensive attention as a potential antioxidant. The aim of this study was to investigate whether LYC alleviates exogenous toxicity in carp induced by sulfamethoxazole (SMZ) and the underlying molecular mechanisms. The grass carp were treated with SMZ (0.3 μg L-1) and/or LYC (10 mg per kg body weight) for 30 days. Indexes, such as hepatic function-related including histopathological changes and biochemical parameters, detoxification system-related including the cytochrome P450 enzyme system and antioxidant system, and immune system-related including inflammatory and apoptosis processes were detected. SB590885 The results showed that SMZ stress leads to significant pathological damage of the liver and induction of oxidative stress. LYC coadministration recovered the cytochrome p450-1A1 homeostasis and decreased SMZ-induced accumulation of intracellular reactive oxygen species (ROS). Mechanistically, indicators in the innate immune system (such as toll like receptors (TLRs), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and IL-8) and the apoptosis pathway (p53, PUMA, B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax), and Caspase-9/3) disclosed adaptive activation under SMZ exposure; these anomalies returned to normal or close-to-normal levels after LYC coadministration. Therefore, LYC dietary supplement possesses liver protective function against exogenous toxic compounds like SMZ, making LYC a functional aquatic feed ingredient for aquiculture.Green-emissive N,S-self-doped carbon nanodots (N,S-self-CNDs) with an ultrahigh fluorescence (FL) quantum yield (QY) of 60% were synthesized using methyl blue as the only source by a facile hydrothermal approach. The -NH- and -SOx- groups of methyl blue were simultaneously used as nitrogen and sulfur co-dopants to dope into CNDs. The prepared N,S-self-CNDs have an extremely large Stokes shift (∼130 nm) and excitation-independent fluorescence, and are demonstrated to have multiple applications for H2S sensing, bioimaging and anti-counterfeiting. Taking advantage of their excellent optical properties, N,S-self-CNDs could act as a label-free nanoprobe for the detection of H2S. The FL of N,S-self-CNDs could be significantly quenched by H2S because of dynamic quenching, along with excellent selectivity toward H2S from 0.5-15 μM with a detection limit of 46.8 nM. They were successfully employed for the analysis of H2S content in actual samples. Additionally, the nanoprobe was extended to bioimaging in both living PC12 cells and zebrafish, and monitoring H2S in live cells.
Here's my website: https://www.selleckchem.com/products/SB590885.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team