NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

COVID-19 Neighborhood Chance as well as Connected Neighborhood-Level Traits in Texas, Texas, U . s ..
Electrical impedance tomography is clinically used to trace ventilation related changes in electrical conductivity of lung tissue. Estimating regional pulmonary perfusion using electrical impedance tomography is still a matter of research. To support clinical decision making, reliable bedside information of pulmonary perfusion is needed. We introduce a method to robustly detect pulmonary perfusion based on indicator-enhanced electrical impedance tomography and validate it by dynamic multidetector computed tomography in two experimental models of acute respiratory distress syndrome. The acute injury was induced in a sublobar segment of the right lung by saline lavage or endotoxin instillation in eight anesthetized mechanically ventilated pigs. For electrical impedance tomography measurements, a conductive bolus (10% saline solution) was injected into the right ventricle during breath hold. Electrical impedance tomography perfusion images were reconstructed by linear and normalized Gauss-Newton reconstruction on a finite element mesh with subsequent element-wise signal and feature analysis. An iodinated contrast agent was used to compute pulmonary blood flow via dynamic multidetector computed tomography. Spatial perfusion was estimated based on first-pass indicator dilution for both electrical impedance and multidetector computed tomography and compared by Pearson correlation and Bland-Altman analysis. Strong correlation was found in dorsoventral (r = 0.92) and in right-to-left directions (r = 0.85) with good limits of agreement of 8.74% in eight lung segments. With a robust electrical impedance tomography perfusion estimation method, we found strong agreement between multidetector computed and electrical impedance tomography perfusion in healthy and regionally injured lungs and demonstrated feasibility of electrical impedance tomography perfusion imaging.Reliable MRI is crucial for accurate interpretation in therapeutic and diagnostic tasks. However, undersampling during MRI acquisition as well as the overparameterized and non-transparent nature of deep learning (DL) leaves substantial uncertainty about the accuracy of DL reconstruction. With this in mind, this study aims to quantify the uncertainty in image recovery with DL models. To this end, we first leverage variational autoencoders (VAEs) to develop a probabilistic reconstruction scheme that maps out (low-quality) short scans with aliasing artifacts to the diagnostic-quality ones. The VAE encodes the acquisition uncertainty in a latent code and naturally offers a posterior of the image from which one can generate pixel variance maps using Monte-Carlo sampling. Accurately predicting risk requires knowledge of the bias as well, for which we leverage Stein's Unbiased Risk Estimator (SURE) as a proxy for mean-squared-error (MSE). A range of empirical experiments is performed for Knee MRI reconstruction under different training losses (adversarial and pixel-wise) and unrolled recurrent network architectures. Our key observations indicate that 1) adversarial losses introduce more uncertainty; and 2) recurrent unrolled nets reduce the prediction uncertainty and risk.Computed tomography (CT) has been widely used for medical diagnosis, assessment, and therapy planning and guidance. In reality, CT images may be affected adversely in the presence of metallic objects, which could lead to severe metal artifacts and influence clinical diagnosis or dose calculation in radiation therapy. In this article, we propose a generalizable framework for metal artifact reduction (MAR) by simultaneously leveraging the advantages of image domain and sinogram domain-based MAR techniques. We formulate our framework as a sinogram completion problem and train a neural network (SinoNet) to restore the metal-affected projections. To improve the continuity of the completed projections at the boundary of metal trace and thus alleviate new artifacts in the reconstructed CT images, we train another neural network (PriorNet) to generate a good prior image to guide sinogram learning, and further design a novel residual sinogram learning strategy to effectively utilize the prior image information for better sinogram completion. The two networks are jointly trained in an end-to-end fashion with a differentiable forward projection (FP) operation so that the prior image generation and deep sinogram completion procedures can benefit from each other. Finally, the artifact-reduced CT images are reconstructed using the filtered backward projection (FBP) from the completed sinogram. Extensive experiments on simulated and real artifacts data demonstrate that our method produces superior artifact-reduced results while preserving the anatomical structures and outperforms other MAR methods.Skin biopsy histopathological analysis is one of the primary methods used for pathologists to assess the presence and deterioration of melanoma in clinical. A comprehensive and reliable pathological analysis is the result of correctly segmented melanoma and its interaction with benign tissues, and therefore providing accurate therapy. In this study, we applied the deep convolution network on the hyperspectral pathology images to perform the segmentation of melanoma. To make the best use of spectral properties of three dimensional hyperspectral data, we proposed a 3D fully convolutional network named Hyper-net to segment melanoma from hyperspectral pathology images. In order to enhance the sensitivity of the model, we made a specific modification to the loss function with caution of false negative in diagnosis. The performance of Hyper-net surpassed the 2D model with the accuracy over 92%. The false negative rate decreased by nearly 66% using Hyper-net with the modified loss function. These findings demonstrated the ability of the Hyper-net for assisting pathologists in diagnosis of melanoma based on hyperspectral pathology images.We present the design and performance of a new compact preclinical system combining positron emission tomography (PET) and magnetic resonance imaging (MRI) for simultaneous scans. The PET contains sixteen SiPM-based detector heads arranged in two octagons and covers an axial field of view (FOV) of 102.5 mm. Depth of interaction effects and detector's temperature variations are compensated by the system. The PET is integrated in a dry magnet operating at 7 T. PET and MRI characteristics were assessed complying with international standards and interferences between both subsystems during simultaneous scans were addressed. For the rat size phantom, the peak noise equivalent count rates (NECR) were 96.4 kcps at 30.2 MBq and 132.3 kcps at 28.4 MBq respectively with and without RF coil. selleck For mouse, the peak NECR was 300.0 kcps at 34.5 MBq and 426.9 kcps at 34.3 MBq respectively with and without coil. At the axial centre of the FOV, spatial resolutions expressed as full width at half maximum / full width at tenth maximum (FWHM/FWTM) ranged from 1.
Homepage: https://www.selleckchem.com/
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.