Notes
![]() ![]() Notes - notes.io |
The development of an innovative and easy way to run assays for the quantitative detection of DNA present in biological fluids (i.e., blood, urine, and saliva) is of great interest for early diagnosis (e.g., tumors) and personalized medicine. CP-673451 purchase Herein, a new quantitative assay based on the use of highly sensitive carboxyfluorescein-loaded liposomes as signal amplification systems is reported. The method has been tested for the detection of low amounts of DNA sequences. The reported proof of concept exploits a target DNA molecule as a linker between two complementary oligonucleotides. One oligonucleotide is biotinylated at its 3' end and binds to streptavidin-coupled magnetic beads, whereas the other one is conjugated to a cholesterol molecule incorporated in the phospholipidic bilayer of the fluorescent liposomes. In the presence of the target fragment, the correct formation of a construct takes place as witnessed by a strong fluorescence signal, amplified by dissolving lipidic nanoparticles with Triton X-100. The system is able to detect specific nucleotide sequences with a very low detection threshold of target DNA (tens of picomolar). The assay allows the detection of both single- and double-stranded DNA. Studies performed in human blood serum show the correct assembling of the probe but with a reduction of limit of detection (up to ∼1 nM). This liposome signal amplification strategy could be used not only for the detection of DNA but also for other nucleic acids (mRNA; microRNA) that are difficult to be quantified by currently available protocols. Copyright © 2020 American Chemical Society.Legume species are an important source of protein and other nutrients for human and livestock consumption, playing a central role in food security. Besides, legumes benefit agriculture because of their ability to establish symbiotic interactions with nitrogen-fixing bacteria, providing nitrogen for subsequent crops, which is very much appreciated for sustainable agricultural practices. However, like other food crops, legumes are highly vulnerable to climate variations, water stresses being the main constraint that negatively affects both crop quality and productivity. Because of this, the development of strategies to improve the tolerance of such cultivars against water stresses, as well as the study of effective approaches to monitor these improvements, have gained special attention during the last years. Among these strategies, metabolomics has been considered one of the most promising approaches for the detection and/or quantification of primary and secondary stress-responsive metabolites in abiotic stresses. In plant science, many research groups have been using metabolomics to evaluate the success of genetic modifications by the analysis of chemical markers that can be altered in breeding programs. In addition, metabolomics is a powerful tool for the evaluation and selection of wild specimens with desirable traits that can be used in the development of improved new cultivars. Therefore, the aim of the present paper is to review the recent progress made in the field of metabolomics and plant breeding, especially concerning the adaptive responses of legume species to abiotic stresses as well as to point out the key primary and secondary metabolites involved in the adaptation and sensing mechanisms. Copyright © 2020 American Chemical Society.Post-translational modification of substrate proteins plays crucial roles in the regulation of their activity, cellular localization, and ability to be recognized by other proteins. One of those modifications involves the installment of adenosine-diphosphate-ribose (ADPr) onto nucleophilic side-chain groups of amino acid residues. This highly dynamic process is regulated by ADP-ribosyl transferases (ARTs) that install the ADPr-molecules on selected proteins and poly(ADP-ribosyl) glycohydrolases (PARGs) and (ADP-ribosyl)hydrolases (ARHs) that trim down and remove ADPr-chains. In this mini-review, the most recent advances in the chemical synthesis of ADPr-conjugates, poly-ADP-ribose, ADPr-peptides, and -proteins, and other tools to investigate ADPr-biology are discussed. Copyright © 2020 American Chemical Society.It is known that reactive oxygen (ROS) and nitrogen (RNS) species play a diverse role in various biological processes, such as inflammation, signal transduction, and neurodegenerative injury, apart from causing various diseases caused by oxidative and nitrosative stresses, respectively, by ROS and RNS. Thus, it is very important to quantify the concentration level of ROS and RNS in live cells, tissues, and organisms. Various small-molecule-based fluorescent/chemodosimetric probes are reported to quantify and map the effective distribution of ROS/RNS under in vitro/in vivo conditions with a great spatial and temporal resolution. Such reagents are now appreciated as an excellent tool for aiding breakthroughs in modern redox biology. This mini-review is a brief, but all-inclusive, account of such molecular probes that have been developed recently. Copyright © 2020 American Chemical Society.Introduction Cerebrospinal fluid (CSF) leak is a common complication of surgery involving the lumbar spine. However, although there are various therapeutic options for CSF leak, there is currently no optimal technique, and the choice of therapy often depends on the surgeon's cumulative experience. The aim of this study was to describe the successful treatment of CSF leakage using blood injection therapy along the drain removal tract. Technical Note We enrolled 7 consecutive patients who underwent lumbar surgery at our institute. The surgeries performed included decompression in two patients (one microendoscopic surgery), fusion in four, and an epidural cyst resection in one. After finding a CSF leak, we injected about 10 ml of blood from the patient into the drain tract. CSF leak did not recur after the blood injection in any of the seven patients. Following just one day of bed rest, the symptoms of intracranial hypotension disappeared with no instances of worsened symptoms of back pain, lower limb pain or fever.
Website: https://www.selleckchem.com/products/CP-673451.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team