Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Novel dosage form designs aiming at patient centric drug therapy are summarized here based on my carrier research in this field. The common key word for this research is particle design. The topics will be divided into two parts, based on the type of particle coarse particles (powder) and colloidal particles. The former includes the preparation and characterization of functional particles prepared using a spray dryer. Solid dispersions, solvent deposition particles and dry emulsion systems are described. Polymer coated liposomes are described as a useful drug delivery carrier in several administration routes. As chitosan, a mucoadhesive polymer, was used as a coating polymer, the resultant chitosan-coated liposome was found to work as a good carrier for peptide drugs such as insulin and calcitonin in the gastrointestinal tract after oral administration. In another administration route (inhalation), polymer-coated liposomes enhanced the absorption of the drugs. Liposomal carriers applied to the surface of the eye as eye drops are able to deliver drugs to the posterior part of the eye, such as the retina. As a typical example of patient centric dosage form design, particle designs for the preparation of orally disintegrating tablets and films were introduced in one of our recent studies on oral dosage form design.We previously showed that increased permeability of the blood-brain barrier (BBB) after ischemic stroke enables extravasation of nano-sized liposomes and accumulation in the ischemic region, and that delivery of neuroprotective agents using liposomal drug delivery systems (DDS) is applicable for treating cerebral ischemia/reperfusion (I/R) injury. However, entry of liposomes into the brain parenchyma was limited in the early stages after I/R possibly due to microvascular dysfunction induced by pathological progression. As such, new approaches to overcome the BBB are needed. Leukocytes can pass through inflamed BBB in I/R region due to membrane proteins displayed on their surface. We thus hypothesized that incorporation of leukocyte membrane proteins onto liposomal membranes would impart leukocyte-mimicking functions to liposomes and that leukocyte-mimetic liposomes (LM-Lipo) may pass through inflamed endothelial cells and BBB, similar to leukocytes. LM-Lipo prepared using intermembrane protein transfer from human leukemia cells showed significantly increased association to inflamed human umbilical vein endothelial cells relative to plain liposomes. Moreover, LM-Lipo passed through inflamed endothelial cell layer by regulating intercellular junctions. These results suggest that imparting leukocyte-like properties to liposomes via intermembrane protein transfer would be an effective strategy to overcome inflamed endothelial barriers. In this review, we describe our findings on ischemic stroke treatment using liposomal DDS and the potential of LM-Lipo to overcome inflamed endothelial barriers.Ascertaining the absorption, distribution, metabolism, and excretion (ADME) profile of drugs is one of the most crucial factors in the process of drug discovery. Since it is important to combine water solubility and cell permeability within the compound to achieve the desired ADME properties, an appropriate balance between lipophilicity and hydrophilicity is required. It is often necessary to facilitate hydrophilicity of very hydrophobic candidates, because quite lipophobic molecules are rarely hit as positive in molecular-targeted or cell-based screenings. For that purpose, it has been popular to conjugate hydrophobic molecules with polyethylene glycol (PEG). However, PEG is a polymer, and PEG-conjugated molecules are not uniform. Besides, the dosage should be much increased compared with the original molecule due to the increase in molecular weight. Therefore we have been developing alternative ways to endow hydrophobic compounds with extra hydrophilicity by conjugating with symmetrically branched glycerol oligomers. This technology is versatile and easily applicable to various hydrophobic compounds. Water-solubility of fenofibrate, one of the most hydrophobic medicines in clinical use, was facilitated by a factor of more than 2000, and its lipid-lowering effect in vivo improved more than ten-fold, by simply conjugating with branched glycerol trimer, for instance. Here we will briefly introduce the basic concepts and our successful experiences of applying branched glycerol oligomers including antitumor agents in terms of water-solubility, pharmacological effects, and pharmacokinetics, and merits and current issues will be discussed in this review.Tourette's syndrome (TS) is an inherited neurologic disorder characterized by involuntary stereotyped motor and vocal tics. Its pathogenesis is still unclear and its treatment remains limited. Recent research has suggested the involvement of immune mechanisms in the pathophysiology of TS. Microglia are the brain's resident innate immune cells. They can mediate neuroinflammation and regulate brain development and homeostasis. A traditional Chinese medicine (TCM), Ningdong granule (NDG), has been found to be efficacious in the treatment of TS while causing few adverse reactions. click here In the current study, a rat model of 3,3'-iminodipropionitrile (IDPN)-induced TS was used to explore the regulating effects and mechanisms of NDG on microglia-mediated neuroinflammation. IDNP led to robust pathological changes and neurobehavioral complications, with activation of microglia in the striatum of rats with TS. After activation by IDNP, microglia strongly responded to this specific injury, and TNF-α, IL-6, and MCP-1 were released in the striatum and/or serum of rats with TS. Interestingly, NDG inhibited the activation of microglia and decreased the abnormal expression of TNF-α, IL-6, and MCP-1 in the striatum and/or serum of rats with TS, thus controlling tics. However, there were no significant changes in the striatum and/or serum of rats with TS after treatment with haloperidol. The anti-TS action of haloperidol might occur not through microglial activation and neuroinflammation but through the DAT system, thus controlling tics. In conclusion, microglia might play key roles in mediating neuroinflammatory responses in TS, triggering the release of TNF-α, IL-6, and MCP-1.NDG inhibited tics in rats with TS, and this mechanism may be associated with a reduction in the increased number of activated microglia and a decrease in the expression of pro-inflammatory cytokines and chemokines in the striatum and/or serum.
My Website: https://www.selleckchem.com/products/arv-110.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team