Notes
![]() ![]() Notes - notes.io |
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and recurrent outbreaks on the African continent and the Arabian Peninsula and continues to expand its habitat. RVFV induces severe disease in newborns and abortion in pregnant ruminants. The viral genome consists of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M segment encodes a glycoprotein precursor protein that is co-translationally cleaved into the two structural glycoproteins Gn and Gc, which are involved in receptor attachment and cell entry. We previously constructed a four-segmented RVFV (RVFV-4s) by splitting the M genome segment into two M-type segments encoding either Gn or Gc. RVFV-4s replicates efficiently in cell culture but was shown to be completely avirulent in mice, lambs and pregnant ewes. Here, we show that a RVFV-4s candidate vaccine for veterinary use (vRVFV-4s) does not disseminate in vaccinated animals, is not shed or spread to the environment and does not revert to virulence. Furthermore, a single vaccination of lambs, goat kids and calves was shown to induce protective immunity against a homologous challenge. Finally, the vaccine was shown to provide full protection against a genetically distinct RVFV strain. Altogether, we demonstrate that vRVFV-4s optimally combines efficacy with safety, holding great promise as a next-generation RVF vaccine.Numerous light-based diagnostic and therapeutic devices are routinely used in the clinic. These devices have a familiar look as items plugged in the wall or placed at patients' bedsides, but recently, many new ideas have been proposed for the realization of implantable or wearable functional devices. Many advances are being fuelled by the development of multifunctional materials for photonic healthcare devices. However, the finite depth of light penetration in the body is still a serious constraint for their clinical applications. In this Review, we discuss the basic concepts and some examples of state-of-the-art implantable and wearable photonic healthcare devices for diagnostic and therapeutic applications. First, we describe emerging multifunctional materials critical to the advent of next-generation implantable and wearable photonic healthcare devices and discuss the path for their clinical translation. Then, we examine implantable photonic healthcare devices in terms of their properties and diagnostic and therapeutic functions. XAV-939 nmr We next describe exemplary cases of noninvasive, wearable photonic healthcare devices across different anatomical applications. Finally, we discuss the future research directions for the field, in particular regarding mobile healthcare and personalized medicine.Rhabdomyosarcoma (RMS) is the most frequent form of pediatric soft-tissue sarcoma. It is divided into two main subtypes ERMS (embryonal) and ARMS (alveolar). Current treatments are based on chemotherapy, surgery, and radiotherapy. The 5-year survival rate has plateaued at 70% since 2000, despite several clinical trials. RMS cells are thought to derive from the muscle lineage. During development, myogenesis includes the expansion of muscle precursors, the elimination of those in excess by cell death and the differentiation of the remaining ones into myofibers. The notion that these processes may be hijacked by tumor cells to sustain their oncogenic transformation has emerged, with RMS being considered as the dark side of myogenesis. Thus, dissecting myogenic developmental programs could improve our understanding of RMS molecular etiology. We focused herein on ANT1, which is involved in myogenesis and is responsible for genetic disorders associated with muscle degeneration. ANT1 is a mitochondrial protein, which has a dual functionality, as it is involved both in metabolism via the regulation of ATP/ADP release from mitochondria and in regulated cell death as part of the mitochondrial permeability transition pore. Bioinformatics analyses of transcriptomic datasets revealed that ANT1 is expressed at low levels in RMS. Using the CRISPR-Cas9 technology, we showed that reduced ANT1 expression confers selective advantages to RMS cells in terms of proliferation and resistance to stress-induced death. These effects arise notably from an abnormal metabolic switch induced by ANT1 downregulation. Restoration of ANT1 expression using a Tet-On system is sufficient to prime tumor cells to death and to increase their sensitivity to chemotherapy. Based on our results, modulation of ANT1 expression and/or activity appears as an appealing therapeutic approach in RMS management.
Breastfeeding as an infant appears protective against later development of some autoimmune diseases, but research into its influence on multiple sclerosis (MS) risk has yielded inconclusive results.
We investigated the possible impact of breastfeeding on MS risk.
We used two population-based case-control studies comprising 3670 cases and 6737 matched controls. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between MS and exposure to prolonged breastfeeding (4 months or longer) versus reduced breastfeeding (less than 4 months). A meta-analysis of case-control studies that assessed the impact of breastfeeding on MS risk among women and men was conducted.
Prolonged breastfeeding was associated with reduced MS risk among men (OR 0.7, 95% CI 0.5-0.9) but not among women (OR 0.9, 95% CI 0.8-1.1). Among men, a synergistic effect was observed between
carrier status and reduced breastfeeding.
Findings from the current study add to accumulating evidence that breastfeeding may be a modifiable protective factor for reducing the risk of MS in offspring. When possible, mothers should be supported to breastfeed their infants; however, the mechanism of a sex-specific biologic effect of breastfeeding on MS risk is unclear.
Findings from the current study add to accumulating evidence that breastfeeding may be a modifiable protective factor for reducing the risk of MS in offspring. When possible, mothers should be supported to breastfeed their infants; however, the mechanism of a sex-specific biologic effect of breastfeeding on MS risk is unclear.
My Website: https://www.selleckchem.com/products/XAV-939.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team