Notes
![]() ![]() Notes - notes.io |
While biodegradable and do not require removal, these PSIs can safely be removed to terminate the treatment if required. Colcemid mouse The versatility of this technology makes it attractive as an ULA drug delivery platform for HIV and various therapeutic applications.MicroRNAs (miRNA) is vital for gene expression regulation and normal kidney function. Mainly, miRNA-30a is responsible for the homeostasis of podocytes. In the diabetic nephropathic condition, miRNA-30a is directly and primarily suppressed by hyperglycemic kidney induced Notch signaling pathway leads to podocyte damage and apoptosis. Thus, transferring the exogenous miRNA-30a to podocytes might improve albuminuria as well as podocytes injury. The deprived stability, poor targetability, and low specificity in vivo are critical limitations to attain this objective. This investigation reports the specific and efficient delivery of miRNA-30a mimic via cyclo(RGDfC)-gated polymeric-nanoplexes with dendrimer templates to alleviate podocyte conditions. The nanoplexes able to protect RNase enzyme and to exhibit greater cellular uptake viaαvβ3 receptor selective binding in HG treated podocytes. The nanoplexes up-regulated the expression level of miRNA-30a and repress the elevated Notch-1 signaling in HG exposed podocytes. The critical results of in vivo experimentation attribute marked suppression of Notch-1 in streptozotocin (STZ) induced diabetic C57BL/6 mice and reduced glomerular expansion and fibrosis in the glomerular area. Developed nanoplexes represents an efficient platform for the targeted delivery of exogenous miRNA to podocytes. The approach developed herein could be extrapolated to other gene therapeutics and other kidney-related diseases.Alkanediols are frequently used as alternative antimicrobial preservatives for dermal formulations. However, these substances can also have an influence on the biopharmaceutical properties of the applied preparations. Therefore, the influence 2-methyl-2,4-pentanediol, 1,2-pentanediol, 1,2-hexanediol and 1,2-octanediol on the release of triamcinolone acetonide (TAA) from four different commonly used semi-solid vehicles was investigated. In addition, the solubility of TAA in aqueous alkanediol solutions was evaluated. It was observed that its solubility increases as a function of chain length of the alkanediol, with exception of 1,2-octanediol. This can be related to the corresponding solubility parameters. Despite alkanediols increase the aqueous solubility of TAA, polarization microscopic images revealed that a significant amount of the drug is present in the suspended state in all formulations. Therefore, TAA release was proportional to the square root of time, indicating Higuchi kinetic. Alkanediols modify the release of TAA depending on the used base. The addition of alkanediols to the hydrogel formulation result in a slightly augmented release rate of the drug with increasing chain length of the added alkanediol. In contrast, alkanediols having longer chain lengths diminish the TAA release rate from all tested creams. Consequently, TAA release revealed to be partially inequivalent upon the addition of alkanediols.To accurately quantify the nonsinkness in dissolution testing of supersaturating formulations, our group previously introduced a dimensionless Sink Index (SI) SI = Cs/(Dose/V), where Cs is the solubility of crystalline drug, V the volume of dissolution medium, and Dose the total amount of drug in the test sample. The objective of this study is to test whether one can consistently generate similar (or superimposable) kinetic solubility profiles (KSP) from a given amorphous solid dispersion (ASD) with different volume, type of dissolution medium, and/or total dose as long as the SI value is kept constant. Dissolution results based on ASDs of model drugs fenofibrate, indomethacin, and posaconazole in polyvinylpyrrolidone and poly(2-hydroxyethyl methacrylate) show that similar (or superimposable) kinetic solubility profiles (relative difference f1 less then 15) for ASDs can be achieved when conducting dissolution studies in the same dissolution medium (i.e., same composition and pH), irrespective of variations in medium volume, scale of USP dissolution apparatus, or total dose, as long as the SI value is kept constant. However, maintaining a constant SI did not generate similar kinetic solubility profiles when two different buffer media were compared (f1 ≫ 15) due to changes in API solubility and the final concentration in different media.Liquisolid systems are emerging formulation approach for poorly soluble drugs, based on adsorption/absorption of drug dispersion and obtaining free-flowing powder with good compressibility. SeDeM Expert System represents a powder processability evaluation method. It may provide additional insight into liquisolid systems critical quality attributes, but the contribution of this approach remains to be explored. The aims of this study were pellet preparation by combination of liquisolid technology and water granulation/extrusion, evaluation of liquisolid based systems (pellets/admixtures) and investigation into the applicability of SeDeM Expert System in liquisolid systems characterization. Pellets/admixtures were prepared with microcrystalline cellulose as carrier and crospovidone/silicon dioxide as coating agent. Ibuprofen solution in polyethylene glycol 400 was used as liquid phase. After comprehensive sample characterization, experimentally obtained parameters were mathematically transformed and evaluated in the SeDeM Expert System framework. Pellets exhibited low aspect ratio and excellent flowability, despite liquid load up to 52.2%. The investigated liquisolid admixtures exhibited good flowability and faster drug dissolution than pellets. Single pellet crushing test results exhibited strong correlation with compact indentation hardness and may be used as indentation hardness predictor. SeDeM Expert System provides useful insight into liquisolid system processability and comparative evaluation and it may facilitate final solid dosage form development.Photothermal therapy (PTT) is a minimally invasive procedure for treating cancer. The two significant prerequisites of PTT are the photothermal therapeutic agent (PTA) and near-infrared radiation (NIR). The PTA absorbs NIR, causing hyperthermia in the malignant cells. This increased temperature at the tumor microenvironment finally results in tumor cell damage. Nanoparticles play a crucial role in PTT, aiding in the passive and active targeting of the PTA to the tumor microenvironment. Through enhanced permeation and retention effect and surface-engineering, specific targeting could be achieved. This novel delivery tool provides the advantages of changing the shape, size, and surface attributes of the carriers containing PTAs, which might facilitate tumor regression significantly. Further, inclusion of surface engineering of nanoparticles is facilitated through ligating ligands specific to overexpressed receptors on the cancer cell surface. Thus, transforming nanoparticles grants the ability to combine different treatment strategies with PTT to enhance cancer treatment.
Read More: https://www.selleckchem.com/products/colcemid.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team