NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

DSmishSMS-A Method to identify Smishing Text.
84-6.42 ng L-1. The standard deviations for five consecutive extractions of 100 μg L-1 analytes were 3.00-10.20%, while the standard deviation for the extractions of 100 μg L-1 analytes with five different coatings were 5.70-13.80%. The proposed method was applied for the detection of the benzoates in cosmetics, and the recoveries for the spiked benzoates were 82.8-116.8%.Developing efficient and sensitive cytosensing method has great significance for the detection of low abundant circulating tumor cells (CTCs). Electrochemiluminescence (ECL) biosensor, as an attractive analytical tool, has shown a great potential in sensitive cell counting. Its detection efficiency is strongly dependent on the electrochemiluminescent materials, whose property is related to its morphology and surface vacancies. Herein, the ultrathin Lu2O3-S nanosheets contain abundant oxygen vacancies were newly synthesized. Its special two-dimensional (2D) structure morphology and surface vacancy endowed it intensified and stable ECL emission. The possible mechanism was deduced from experiments and discussed. Then, through integrating with a DNA device cycle-amplification system plus signal conversion pretreatment, we constructed a crossed enhanced ECL cytosensing platform. In this system, the target cells were transformed into programmable sequences, which could be next coupled with DNA device cycle-amplification on the modified electrode surface. Using Ag2S quantum dots as the energy acceptor toward Lu2O3-S donor, and CCRF-CEM cells (CEM) as the model CTCs, an enhanced ECL cytosensing platform was proposed, displaying good analytical performance for acute lymphoblastic leukemia cancer cell detection. The ECL signal responded proportionately on the CEM cells concentration in a wide range of 5 × 10 to 1 × 106 cells/mL, and a low detection limit of 10 cells/mL was obtained. https://www.selleckchem.com/products/hs148.html This work provided an alternative way to design high-performance ECL luminophores, and also would be an effective solution for CTCs counting.In this work, a novel composite adsorbent was successfully prepared by zeolite imidazolate framework-8/fluorinated graphene layer-by-layer covalently bonded on SiO2 microspheres, and followed to be packed into micro pipette tip for extraction of trace chlorophenols prior to their detection by high performance liquid chromatography (HPLC). The morphology and structure of adsorbent material was characterized by field emission scanning electron microscopy with energy dispersive spectrometer, X-ray diffraction, and N2 adsorption. The parameters including the amount of adsorbent, sampling volume, sampling rate, sample pH, and desorption solvent affected the extraction performance was systematically investigated by pipette tip solid-phase extraction (PT-SPE) coupled with HPLC analysis. Under the optimized condition, the linearity of this method ranged from 20 to 2000 ng mL-1 for chlorophenols (CPs) with determination coefficient higher than 0.99. The limit of detection (at a signal-to-noise ratio of 3) were in the range 2-20 ng mL-1 for tap water and black tea drinks, 0.2-2 μg g-1 for honey. The relative recoveries of the CPs from spiked samples ranged from 71.8% to 104.7%, with relative standard deviations less than 6.2%. The filled extraction tube exhibited good stability and reproducibility. The proposed method has been successfully used to detect CPs in water and drinks with satisfactory recoveries.The sensitive and selective determination of acetaminophen (AP) in the human body is highly desirable to ensure human health. In this work, nickel-doping nanoporous carbon (Ni/C) was fabricated by directly calcining Ni based metal-organic framework (Ni-MOF). The Ni/C based electrochemical sensor was developed for sensitive and selective determination of AP in human blood serum and urine samples. The prepared Ni/C composite possess plentiful catalytic active sites, ordered mesoporous structure and large specific surface area, which endow the constructed Ni/C sensor with a prominent performance for acetaminophen sensing. Under the optimal conditions, the developed method offered good linearity in the range of 0.20-53.75 μM with a low detection limit (S/N = 3) of 4.04 × 10-2 μM. The electrocatalytic performance of the sensor towards AP was further measured by differential pulse voltammetry and cyclic voltammetry. The results demonstrated that the Ni/C sensor can be feasibly employed for the determination of AP in human blood serum and urine samples with excellent anti-interference stability and good reproducibility. The research reveals a great promising of the Ni/C electrochemical sensor for clinical applications and paves a way for the construction of high-performance electrochemical sensors for AP determination.Nucleic acid detection and quantification have been known to be important at various fields, from genetically modified organisms and gene expression to virus detection. For DNA molecules, digital PCR has been developed as an absolute quantification method which is not dependent on external calibrators. While when it comes to RNA molecules, reverse transcription (RT) step must be taken before PCR amplification to obtain cDNA. With different kinds of reverse transcriptase (RTase) and RT reaction conditions being used in laboratory assays, the efficiency of RT process differs a lot which led variety in quantification results of RNA molecules. In this study, we developed HPLC method combined with enzymatic digestion of RNA to nucleotides for quantification of RNA without RT process. This method was metrologically traceable to four nuceloside monophosphate (NMP) Certification Reference Materials of National Institute of Metrology, China (NIMC) for insurance of accuracy. The established method was used to evaluate the reverse transcription digital polymerase chain reaction (RT-dPCR) of three target genes of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) RNA, including open reading frame 1ab (ORF1ab), nucleocapsid protein (N) and envelope protein (E) gene. Three available RT kits had been evaluated and disparities were observed for the RT efficiency varied from 9% to 182%. It is thus demonstrated that HPLC combined with enzymatic digestion could be a useful method to quantify RNA molecules and evaluate RT efficiency. It is suggested that RT process should be optimized and identified in RNA quantification assays.
Homepage: https://www.selleckchem.com/products/hs148.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.