Notes
![]() ![]() Notes - notes.io |
Advanced chelate compounds technology is a novel technology that introduces a new generation of chelates to deliver trace elements better by polymerization of organic acids. In the present study, the over-supplementation effect of Bonzaplex7 supplement, which is designed based on the aforementioned technology, was evaluated on milk yield of dairy Holstein cattle through two experiments. In the first experiment (exp. I), 24 primiparous dairy cows were randomly assigned to one of 3 groups (1) without over-supplementation (control); (2) daily allowance of 7 g/cow Bonzaplex7 containing Co (12 mg), Cr (3.5 mg), Cu (126 mg), Fe (56 mg), Mn (196 mg), Se (2 mg), and Zn (357 mg) (Bonzaplex7); and (3) daily allowance of the same amounts of all of the trace minerals in amino acid complex form (AA). In the second experiment (exp. II), 170 multiparous dairy cows received either 7 g/day/cow Bonzaplex7 (85 cows, test) or no additional supplement (85 cows, NS). In exp. I, the milk yields in control, Bonzaplex7, and AA were 34.30, 36.46, and 35.83 kg/day, respectively (P = 0.528). No significant differences in milk composition were detected among the groups. In exp. II, however, higher milk fat and energy-corrected milk yield were observed in test compared with NS. Both Bonzeplex7 and AA elevated the plasma concentrations of Cu, Mn, and Se. The results provided evidence that supplementing dairy cows with a combination of trace minerals which produced using the advanced chelate compounds technology has a potential to improve milk fat and to decrease disease susceptibility under stressed conditions.Silver nanoparticles (AgNPs) are widely used in industrial and consumer products owing to its antimicrobial nature and multiple applications. Consequently, their release into the environment is becoming a big concern because of their negative impacts on living organisms. In this work, AgNPs were detected at a potential of + 0.70 V vs. Ag/AgCl reference electrode, characterized, and quantified in consumer products by particle collision coulometry (PCC). The electrochemical results were compared with those measured with electron microscopy and single-particle inductively coupled plasma mass spectrometry. The theoretical and practical peculiarities of the application of PCC technique in the characterization of AgNPs were studied. Reproducible size distributions of the AgNPs were measured in a range 10-100 nm diameters. A power allometric function model was found between the frequency of the AgNPs collisions onto the electrode surface and the number concentration of nanoparticles up to a silver concentration of 1010 L-1 (ca. 25 ng L-1 for 10 nm AgNPs). A linear relationship between the number of collisions and the number concentration of silver nanoparticles was observed up to 5 × 107 L-1. The PCC method was applied to the quantification and size determination of the AgNPs in three-silver containing consumer products (a natural antibiotic and two food supplements). The mean of the size distributions (of the order 10-20 nm diameters) agrees with those measured by electron microscopy. The areas of current spikes from the chronoamperogram allow the rapid calculation of size distributions of AgNPs that impact onto the working electrode.An ultrasensitive and rapid fluorescent immunoassay based on a broad-spectrum monoclonal antibody (mAb) was developed to detect pyrrolizidine alkaloids (PAs) in honey samples. First, Discovery Studio software was used to analyze and predict the target hapten, and retrorsine (RTS) was selected to react with succinic anhydride (HS) for hapten synthesization. A sensitive and broad-spectrum monoclonal antibody (mAb 13E1) was obtained for nine PAs. Then, fluorescent gold nanoclusters (AuNCs) were conjugated with mAb as a label probe and used in establishing a qualitative and quantitative lateral flow immunoassay (AuNCs-LFIA) for the determination of four PAs (retrorsine, platyphylline, senecionine, integerrimine) in honey within 14 min. The limits of detection (LOD) were 0.083 μg/kg. The recovery in spiked honey samples were 87.98-119.57%, with coefficients of variation of ≤ 11.5%. A total of 45 commercial import honey samples from nine different countries were tested through AuNCs-LFIA and UPLC-MS/MS method, and satisfactory consistency (R2 = 0.995) was obtained. The rates of positive samples were 55.56% (25/45), and the average concentrations of four PAs were 3.24-46.47 μg/kg. This ultrasensitive multi-PA method provides an alternative analytical tool for evaluating the human risk posed by the consumption of PA-contaminated honey.A novel dual-functional nanoprobe was designed and synthesized by facile assembly of quinoline derivative (PEIQ) and meso-tetra (4-carboxyphenyl) porphine (TCPP) via electrostatic interaction for simultaneous sensing of fluorescence of Zn2+ and pH. ANA-12 cost Under the single-wavelength excitation at 400 nm, this nanoprobe not only exhibits "OFF-ON" green fluorescence at 512 nm by specific PEIQ-Zn2+ chelation, but also presents red fluorescence enhancement at 654 nm by H+-triggered TCPP release. The nanoprobe demonstrated excellent sensing performance with a good linear range (Zn2+, 1-40 μM; pH, 5.0-8.0), low detection limit (Zn2+, 0.88 μM), and simultaneous response towards Zn2+ and pH in pure aqueous solution within 2 min. More importantly, this dual-functional nanoprobe demonstrates the capability of discerning cancerous cells from normal cells, as evidenced by the fact that cancerous HepG2 cells in tumor microenvironment exhibit substantially higher red fluorescence and significantly lower green fluorescence than normal HL-7702 cells. The simultaneous, real-time fluorescence imaging of multiple analytes in a living system could be significant for cell analysis and tracking, cancer diagnosis, and even fluorescence-guided surgery of tumors.
Because of its ease of collection, urine is one of the most commonly used matrices for metabolomics studies. However, unlike other biofluids, urine exhibits tremendous variability that can introduce confounding inconsistency during result interpretation. Despite many existing techniques to normalize urine samples, there is still no consensus on either which method is most appropriate or how to evaluate these methods.
To investigate the impact of several methods and combinations of methods conventionally used in urine metabolomics on the statistical discrimination of two groups in a simple metabolomics study.
We applied 14 different strategies of normalization to forty urine samples analysed by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). To evaluate the impact of these different strategies, we relied on the ability of each method to reduce confounding variability while retaining variability of interest, as well as the predictability of statistical models.
Among all tested normalization methods, osmolality-based normalization gave the best results.
Website: https://www.selleckchem.com/products/ana-12.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team