Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Cognitive control is the capacity to guide motor and perceptual systems towards abstract goals. High-frequency neural oscillations related to motor activity in the beta band (13-30 Hz) and to visual processing in the gamma band (>30 Hz) are known to be modulated by cognitive control signals. One proposed mechanism for cognitive control is via cross-frequency coupling whereby low frequency network oscillations in prefrontal cortex (delta from 2-3 Hz and theta from 4-8 Hz) guide the expression of motor-related activity in action planning and guide perception-related activity in memory access. However, there is no causal evidence for cross-frequency coupling in these dissociable components of cognitive control. To address this important gap in knowledge, we delivered cross-frequency transcranial alternating current stimulation (CF-tACS) during performance of a task that manipulated cognitive control demands along two dimensions the abstraction of the rules of the task (nested levels of action selection) that increased delta-beta coupling and the number of rules (set-size held in memory) that increased theta-gamma coupling. As hypothesized, we found that CF-tACS increased the targeted phase-amplitude coupling and modulated task performance of the associated cognitive control component. These findings provide causal evidence that prefrontal cortex orchestrates different components of cognitive control via two different cross-frequency coupling modalities.Columns and layers are fundamental organizational units of the brain. Well known examples of cortical columns are the ocular dominance columns (ODCs) in primary visual cortex and the column-like stripe-based arrangement in the second visual area V2. The spatial scale of columns and layers is beyond the reach of conventional neuroimaging, but the advent of high field magnetic resonance imaging (MRI) scanners (UHF, 7 T and above) has opened the possibility to acquire data at this spatial scale, in-vivo and non-invasively in humans. The most prominent non-invasive technique to measure brain function is blood oxygen level dependent (BOLD) fMRI, measuring brain activity indirectly, via changes in hemodynamics. A key determinant of the ability of high-resolution BOLD fMRI to accurately resolve columns and layers is the point-spread function (PSF) of the BOLD response in relation to the spatial extent of neuronal activity. In this study we take advantage of the stripe-based arrangement present in visual area V2, coupled with sub-millimetre anatomical and gradient-echo BOLD (GE BOLD) acquisition at 7 T to obtain PSF estimates and along cortical depth in human participants. Results show that the BOLD PSF is maximal in the superficial part of the cortex (1.78 mm), and it decreases with increasing cortical depth (0.83 mm close to white matter).Vulvovaginal candidiasis is a global issue of concern due to its association with economic costs, sexually transmitted infections, and ascending genital tract diseases. This infection affects 75% of women on at least one occasion over a lifetime. The present systematic review and meta-analysis is the first to determine the prevalence of vulvovaginal candidiasis in Iranian women. We searched national (SID, IranDoc, Iranmedex, and Magiran) and international (PubMed, Scopus, Google Scholar, and web of science) databases for studies published between May 2000 until May 2020 reporting the epidemiologic features of vulvovaginal candidiasis in Iranian women. Inclusion and exclusion criteria were defined to select eligible studies. Data were extracted and presented according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The results of the meta-analysis were visualized as a forest plot representing the prevalence estimates of each study. Heterogeneity was also analyzed usiniasis in Iranian women. Given that this infection is associated with the enhanced susceptibility to sexually transmitted diseases (HIV, chlamydia, genital herpes, genital warts, gonorrhea, hepatitis, syphilis, and trichomoniasis) and also is related to the increased probability of preterm birth, congenital cutaneous candidiasis, preterm labor, and infertility, taking preventive measures such as awareness of patients as well as monitoring and controlling of the syndrome are essential.The jellyfish venom stored in nematocysts contains highly toxic compounds comprising of polypeptides, enzymes and other proteins, which form their chemical defence armoury against predators. We have characterized the proteome of crude venom extract from three bloom-forming scyphozoan jellyfish along the south-west coast of India, Chrysaora caliparea, Cyanea nozakii and Lychnorhiza malayensis using a Quadrupole-Time of Flight (Q/TOF) mass spectrometry analysis. The most abundant toxin identified from Chrysaora caliparea and Lychnorhiza malayensis is similar to the pore-forming toxins and metalloproteinases. A protective antioxidant enzyme called peroxiredoxin was found abundantly in Cyanea nozakii. Metalloproteinase identified from the C. caliparea shows similarity with the venom of pit viper (Bothrops pauloensis), while that of L. malayensis was similar to the venom of snakes such as the Bothrops insularis and Bothrops asper. Immunology activator Kininogen-1 is a secreted protein, identified for the first time from the jellyfish L. malayensis. The proteome analysis of Cyanea nozakii, Chrysaora caliparea and Lychnorhiza malayensis contained 20, 12, 8 unique proteins, respectively. Our study characterized the proteome map of crude venom extract from L. malayensis and C. caliparea for the first time, and the venom profile is compared with published information elsewhere. Proteomic data from this study has been made available in the public domain.
Vitamin D deficiency has been linked to cardiovascular pathologies including acute coronary syndrome (ACS). Polymorphisms in vitamin D associated genes have been confounding to vitamin D serum levels and pathological predispositions. 7-hydrocholesterol is a common precursor in cholesterol and vitamin D synthesis. DHCR7/NADSYN1 genetic locus expresses 7-hydrocholesterol reductase (DHCR7), an enzyme that recruits 7-hydrocholesterol in cholesterol biosynthesis, and NAD synthetase 1 (NADSYN1), which participates in the hydroxylation of 25 hydroxyvitamin D.
This study aims to correlate two polymorphisms in the DHCR7/NADSYN1 genetic locus with levels of circulatory vitamin D and the presentation of ACS in an Egyptian population.
In a case control study, 189 ACS patients and 106 healthy control subjects were genotyped for SNPs rs11606033 of the DHCR7 gene and rs2276360 of the NADSYN1 gene using the amplification-refractory mutation system (ARMS). The levels of 25(OH)D2 and 25(OH)D3 were measured using an in-house developed and validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) based protocol.
Read More: https://www.selleckchem.com/products/lipopolysaccharides.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team