NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Practical heterogeneity within the fermentation capabilities from the healthy individual intestine microbiota.
Despite extensive evidence of benefit of thrombectomy in adult ischemic stroke due to large-vessel occlusion in the 6-h window, its role remains uncertain in very young children. We describe hereafter the case of a 2-year-old female child who had a successful thrombectomy 9 h after stroke onset. The patient presented with right hemiplegia, central facial palsy, a normal level of consciousness, and speech difficulties. The PedNIHS score was 11. CT scan without contrast injection displayed spontaneous hyperdensity of the middle cerebral artery (MCA), with only limited early signs of ischemia (ASPECTS 8). CT angiography demonstrated occlusion of the proximal MCA with good collaterals. Thrombectomy was realized. Complete recanalization (TICI 3) was obtained under general anesthesia after two passes of a stent retriever. Time from symptoms onset to full recanalization was 9 h. The acute ischemic stroke was caused by embolic thrombus from a congenital heart disease. Clinical recovery was complete. Three months after the thrombectomy, the young patient was doing well without any neurological sequelae (PedNIHSS 0; modified Rankin Scale 0). This case report is an example of a decision-making process to perform thrombectomy in a very young child, which included cardio-embolic etiology as a parameter that potentially might have participated to the successful outcome of the therapeutic procedure.Background Neurocardiac dysfunction worsens clinical outcome and increases mortality in stroke survivors. We hypothesized that heart rate variability (HRV) biofeedback improves neurocardiac function by modulating autonomic nervous system activity after acute ischaemic stroke (AIS). Methods We randomly allocated (11) 48 acute ischaemic stroke patients to receive nine sessions of HRV- or sham biofeedback over 3 days in addition to comprehensive stroke unit care. Before and after the intervention patients were evaluated for HRV via standard deviation of normal-to-normal intervals (SDNN, primary outcome), root mean square of successive differences between normal heartbeats (RMSSD), a predominantly parasympathetic measure, and for sympathetic vasomotor and sudomotor function. Severity of autonomic symptoms was assessed via survey of autonomic symptom scale total impact score (TIS) at baseline and after 3 months. Results We included 48 patients with acute ischaemic stroke [19 females, ages 65 (4.4), median (interquartile range)]. Treatment with HRV biofeedback increased HRV post intervention [SDNN 43.5 (79.0) ms vs. signaling pathway 34.1 (45.0) ms baseline, p = 0.015; RMSSD 46.0 (140.6) ms vs. 29.1 (52.2) ms baseline, p = 0.015] and alleviated autonomic symptoms after 3 months [TIS 3.5 (8.0) vs. 7.5 (7.0) baseline, p = 0.029], which was not seen after sham biofeedback (SDNN p = 0.63, RMSSD p = 0.65, TIS 0.06). There were no changes in sympathetic vasomotor and sudomotor function (p = ns). Conclusions Adding HRV biofeedback to standard stroke unit care led to improved neurocardiac function and sustained alleviation of autonomic symptoms after acute ischaemic stroke, which was likely mediated by a predominantly parasympathetic mechanism. Clinical Trial Registration www.ClinicalTrials.gov, identifier NCT03865225.The stark discrepancy in the prognosis of epilepsy is closely related to brain damage features and underlying mechanisms, which have not yet been unraveled. In this study, differences in the epileptic brain functional connectivity states were explored through a network-based connectivity analysis between intractable mesial temporal lobe epilepsy (MTLE) patients and benign epilepsy with centrotemporal spikes (BECT). Resting state fMRI imaging data were collected for 14 MTLE patients, 12 BECT patients and 16 healthy controls (HCs). Independent component analysis (ICA) was performed to identify the cortical functional networks. Subcortical nuclei of interest were extracted from the Harvard-Oxford probability atlas. Network-based statistics were used to detect functional connectivity (FC) alterations across intranetworks and internetworks, including the connectivity between cortical networks and subcortical nuclei. Compared with HCs, MTLE patients showed significant lower activity between the connectivity of cortical networks and subcortical nuclei (especially hippocampus) and lower internetwork FC involving the lateral temporal lobe; BECT patients showed normal cortical-subcortical FC with hyperconnectivity between cortical networks. Together, cortical-subcortical hypoconnectivity in MTLE suggested a low efficiency and collaborative network pattern, and this might be relevant to the final decompensatory state and the intractable prognosis. Conversely, cortical-subcortical region with normal connectivity remained well in global cooperativity, and compensatory internetwork hyperconnectivity caused by widespread cortical abnormal discharge, which might account for the self-limited clinical outcome in BECT. Based on the fMRI functional network study, different brain network patterns might provide a better explanation of mechanisms in different types of epilepsy.Introduction Hemiplegic shoulder pain (HSP) is the most common pain disorder after stroke with incidence estimates of 30-70% and associated with reductions in function, interference with rehabilitation, and a reduced quality of life. Onset may occur as soon as a week after stroke in 17% of patients. Management of HSP represents a complex treatment pathway with a lack of evidence to support one treatment. The pain has heterogeneous causes. In the acute setting, decreased range of motion in the shoulder can be due to early-onset spasticity, capsular pattern stiffness, glenohumeral pathology, or complex regional pain syndrome (CRPS). As contracture can form in up to 50% of patients after stroke, effective management of the painful shoulder and upper limb with decreased range of motion requires assessment of each possible contributor for effective treatment. The anesthetic diagnostic nerve block (DNB) is known to differentiate spasticity from contracture and other disorders of immobility and can be useful in determining an appropriate treatment pathway. Objective To create a diagnostic algorithm to differentiate between the causes of HSP in the stiff, painful shoulder in the subacute setting using diagnostic techniques including the Budapest Criteria for CRPS and DNB for spasticity and pain generators. Results Examination of each joint in the upper extremity with HSP may differentiate each diagnosis with the use of an algorithm. Pain and stiffness isolated to the shoulder may be differentiated as primary shoulder pathology; sensory suprascapular DNB or intra-articular/subacromial injection can assist in differentiating adhesive capsulitis, arthritis, or rotator cuff injury. CRPS may affect the shoulder, elbow, wrist, and hand and can be evaluated with the Budapest Criteria. Spasticity can be differentiated with the use of motor DNB. A combination of these disorders may cause HSP, and the proposed treatment algorithm may offer assistance in selecting a systematic treatment pathway.
Read More: https://www.selleckchem.com/TGF-beta.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.