Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
These findings highlight the importance and necessity of considering natural degradation of BPs and related toxicity, which poses great implications for risk assessment and management of BPs.Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. check details We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accuumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.The reuse of treated wastewater (e.g. for irrigation) is a common practice to combat water scarcity problems world-wide. However, the potential spread of opportunistic pathogens and fecal contaminants like Enterococci within the subsoil could pose serious health hazards. Additional sources (e.g., leaky sewer systems, livestock farming) aggravate this situation. This study contributes to an understanding of pathogen spread in the environment, using a combined modelling and experimental approach. The impact of quartz sediment and certain wastewater characteristics on the dissemination of Enterococcus faecalis JH2-2 is investigated. The transport processes of advection-dispersion and straining were studied by injecting conservative saline tracer and fluorescent microspheres through sediment packed columns, and evaluating resulting breakthrough curves using models. Similarly, simultaneously occurring reactive processes of microbial attachment, decay, respiration and growth were studied by injecting Enterococcus faecalis JH2-2 suspended in water with or without dissolved oxygen (DO) and nutrients through sediment, and evaluating resulting inlet and outlet concentration curves. The processes of straining, microbial decay and growth, were important when DO was absent. Irreversible attachment was important when DO was present. Sensitivity analysis of each parameter was conducted, and field scale behavior of the processes was predicted, to facilitate future work.A simple strategy to prepare cost-effective adsorbent materials for the removal of U(VI) in radioactive wastewater is of great significance to environmental protection. Here, activated orange peel was used as a precursor for the synthesis of biomass charcoal, and then a phosphorylated honeycomb-like porous carbon (HLPC-PO4) material was prepared through simple phosphorylation modification. FT-IR and XPS showed that P-O-C, P-C, and P˭O bonds appeared in HLPC-PO4, indicating that the phosphorylation process is mainly the reaction of C-O bonds on the surface of the material with -PO4. The results of the batch experiments showed that the uptake equilibrium of HLPC-PO4 to U(VI) occurred within 20 min, and the kinetic simulation showed that the process was monolayer chemical adsorption. Interestingly, the maximum U(VI) uptake capacity of HLPC-PO4 at T = 298.15 K and pH = 6.0 was 552.6 mg/g, which was more than 3 times that of HLPC. In addition, HLPC-PO4 showed an adsorption selectivity of 70.1% for U(VI). After 5 cycles, HLPC-PO4 maintained its original adsorption capacity of 90.5%. The adsorption mechanism can be explained as the complexation of U(VI) with P-O and P˭O on the surface of the adsorbent, confirming the strong bonding ability of -PO4 to U(VI).Microbial extracellular polymeric substances (EPS) have a profound role in various wastewater treatment and reclamation processes, in which a variety of technologies are used for disinfection and microbial growth inhibition. These treatment processes can induce significant changes in the quantity and properties of EPS, and altered EPS could further adversely affect the wastewater treatment and reclamation system, including membrane filtration, disinfection, and water distribution. To clarify the effects of microbial inactivation approaches on EPS, these effects were classified into four categories (1) chemical reactions, (2) cell lysis, (3) changing EPS-producing metabolic processes, and (4) altering microbial community. Across these different effects, treatments with free chlorine, methylisothiazolone, TiO2, and UV irradiation typically enhance EPS production. Among the residual microorganisms in EPS matrices after various microbial inactivation treatments, one of the most prominent is Mycobacterium. With respect to EPS properties, proteins and humic acids in EPS are usually more susceptible to treatment processes than polysaccharides. The affected EPS properties include changes in molecular weight, hydrophobicity, and adhesion ability. All of these changes can undermine wastewater treatment and reclamation processes. Therefore, effects on EPS quantity and properties should be considered during the application of microbial inactivation and growth inhibition techniques.Activated carbon was a widely-used adsorbent. However, it was usually classified as a hazardous waste after saturation adsorption for one pollution. For the first time, this article reported a regeneration method for the activated carbon saturated with methyl mercaptan. The regenerated carbon was partially transformed into graphene-oxide fragment with a thickness of 0.9-1.0 nm after a hydrothermal treatment at 180 °C. Electron paramagnetic resonance revealed that lactone group was transformed into lactone radical under the hydrothermal condition. The spins were increased from 4.54E+17-1.24E+18. The formed radical effectively reacted with the adsorbed methyl mercaptan and re-distributed the amorphous activated carbon to form lamellar graphene oxide. As a result, the spins were decreased from 1.24E+18-8.73E+17. At the same time, the amount of lactone group was decreased from 0.71 to 0.42 mmol/g. The regenerated activated carbon thus regained ability to adsorb methyl mercaptan. The main result of this paper puts forward a simple and low-cost method to obtain graphene oxide modified activated carbon from the regeneration of hazardous waste carbon.
Website: https://www.selleckchem.com/products/tlr2-in-c29.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team