Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The CAG spherical beads could be regenerated up to six consecutive cycles using an aqueous 0.1 M NaOH solution. The study emphasizes that the fabricated CAG spherical beads could act as a potential adsorbent in the water/wastewater treatment process.Ginkgo biloba L. is distinguished as source of highly promising food and traditional herbal for thousands of years. this website Modern phytochemistry studies have demonstrated that polysaccharide is one of the important biologically-active components of G. biloba. Over the past two decades, the isolation, chemical properties and bioactivities of polysaccharides from leaves, sarcotesta and seeds of G. biloba have been drawing much attention from scholars around the world. It has been demonstrated that G. biloba polysaccharides have various remarkable biological activities, including antioxidant, antiviral, anti-tumor, anti-inflammation, immunomodulatory, and hepatoprotection effects. Moreover, different materials and extracting methods result in the difference in structure and bioactivity of G. biloba polysaccharides. The purpose of this review is aimed at providing systematical and current information on the isolation methods, structural features and bioactivities of G. biloba polysaccharides to support their further application as therapeutic agents and functional foods.Lignin is a natural, renewable resource with potential to be used in biomaterials. Due to its complex structure, its efficient dissolution is still challenging, which hinders its applicability at large scale. This challenge become harder considering the current need of sustainable and environmentally friendly solvents. To the best of our knowledge, this work reports for the first time the dissolution of kraft lignin in levulinic acid, a "green" solvent, and compares its efficiency with common carboxylic acids and sulfuric acid. It has been found that levulinic acid has a high capacity to dissolve kraft lignin at room temperature (40 wt% solubility), and it efficiency is not compromised when diluting the acid with water (up to 40 wt% water content). The Kamlet-Taft π⁎ parameter of the different acidic solvents was estimated and found to correlate well with their solubility performance. Lignins previously dissolved in levulinic and formic acids were selected to be regenerated and minor differences were found in thermal stability and morphological structure, when compared to native kraft lignin. However, an increase in the content of the carbonyl groups in the regenerated lignin material was observed.In the present study, we have fabricated a novel chitosan based nanocomposite (g-C3N4/Ag3PO4/CS) containing g-C3N4 and Ag3PO4 nanoparticles. The fabricated nanocomposite was characterized successfully and used as a catalyst for photocatalytic degradation of ciprofloxacin (CIP) under visible light. The TEM results revealed that the g-C3N4 and Ag3PO4 nanoparticles are well dispersed into the polymer matrix. The surface area of the nanocomposite was determine using N2adsorption and desorption isotherm and calculated using BET equation and found to be 112.47 m2/g. The photocatalytic degradation of CIP was studied at different initial concentrations. The intermediate of and the degradation mechanism was determining using LCMS and DFT techniques. The results revealed that as-fabricated nanocomposite, g-C3N4/Ag3PO4/CS shows, 90.34% degradation of CIP within 60 min at room temperature in neutral medium. The CIP degradation kinetics displays the first-order kinetics with 0.01771 min-1. The reusability of the photocatalyst was observed after six cycles and g-C3N4/Ag3PO4/CS catalyst remains 79.43% degradation of CIP in similar condition.Novel bionanocomposite films were prepared by combining konjac glucomannan/surface deacetylated chitin nanofibers (KGM/S-ChNFs) with different concentrations of citric acid (CA) (10%-25%) via a solution casting method. The effect of CA-induced crosslinking on the rheological behavior of film-forming solutions (FFS) as well as the structural and physicochemical properties of the resulting bionanocomposite films were evaluated. The results revealed that the increased CA loadings increased the shear viscosity of FFS. Fourier transform infrared spectra and scanning electron microscopy results confirmed the successful crosslinking between CA and S-ChNFs. The addition of 20 wt% CA was defined as the optimal condition, resulting in minimum water sensitivity and permeability, while maintaining a good combination of tensile strength and antimicrobial properties. This work supported the conclusion that CA crosslinking was an effective pathway for the preparation of polysaccharide-based bionanocomposite films with improved properties, which may be a promising material for active food packaging applications.In this work, biopolymer hydrogels were synthesized by mixing hyaluronic acid, hydrolyzed collagen, and chitosan through a solvent evaporation method and incorporating them with caffeic acid as an antioxidant agent. The obtained caffeic acid-loaded chitosan/hydrolyzed collagen/hyaluronic acid hydrogels were characterized by X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. No significant change on structural and thermal properties was observed. Furthermore, scanning electron microscope reported that the surface morphology of the hydrogels was smooth, and no significant change in porosity was observed after the addition of hyaluronic acid. With high amount of hyaluronic acid, the swelling behaviour was superiority. The hydrogels showed an initial burst release of caffeic acid (~70%) within 60 min, followed by a gradual release of up to 80% by 480 min. The release was slightly higher with the presence of hyaluronic acid. In addition, DPPH, ABTS+, and FRAP assays revealed that the caffeic acid-loaded hyaluronic acid/hydrolyzed collagen/chitosan hydrogels exhibited antioxidant activity. Thus, these composites could potentially be used as dressing materials with antioxidant activity.Trypsins (E.C. 3.4.21.4) are digestive enzymes that catalyze the hydrolysis of peptide bonds containing arginine and lysine residues. Some trypsins from fish species are active at temperatures just above freezing, and for that are called cold-adapted enzymes, having many biotechnological applications. In this work, we characterized a recombinant trypsin-III from Monterey sardine (Sardinops caeruleus) and studied the role of a single residue on its cold-adapted features. The A236N mutant from sardine trypsin-III showed higher activation energy for the enzyme-catalyzed reaction, it was more active at higher temperatures, and exhibited a higher thermal stability than the wild-type enzyme, suggesting a key role of this residue. The thermodynamic activation parameters revealed an increase in the activation enthalpy for the A236N mutant, suggesting the existence of more intramolecular contacts during the activation step. Molecular models for both enzymes suggest that a hydrogen-bond involving N236 may contact the C-terminal α-helix to the vicinity of the active site, thus affecting the biochemical and thermodynamic properties of the enzyme.
Website: https://www.selleckchem.com/products/azd8186.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team