Notes
![]() ![]() Notes - notes.io |
Epigallocatechin‑3‑gallate (EGCG), a polyphenol present in green tea, exhibits anticancer effects in various types of cancer. A number of studies have focused on the effects of EGCG on lung cancer, but not ovarian cancer. Previous reports have implicated that EGCG suppressed ovarian cancer cell proliferation and induced apoptosis, but its potential anticancer mechanisms and signaling pathways remain unclear. Thus, it is necessary to determine the anti‑ovarian cancer effects of EGCG and explore the underlying mechanisms. In the present study, EGCG exerted stronger proliferation inhibition on SKOV3 cells compared with A549 cells and induced apoptosis in SKOV3 cells, as well as upregulated PTEN expression and downregulated the expression of phosphoinositide‑dependent kinase‑1 (PDK1), phosphor (p)‑AKT and p‑mTOR. These effects were reversed by the PTEN inhibitor VO‑Ohpic trihydrate. The results of the mouse xenograft experiment demonstrated that 50 mg/kg EGCG exhibited increased tumor growth inhibition compared with 5 mg/kg paclitaxel. In addition, PTEN expression was upregulated, whereas the expression levels of PDK1, p‑AKT and p‑mTOR were downregulated in the EGCG treatment group compared with those in untreated mice in vivo. In conclusion, the results of the present study provided a new underlying mechanism of the effect of EGCG on ovarian cancer and may lead to the development of EGCG as a candidate drug for ovarian cancer therapy.Costunolide being a sesquiterpene lactone, is known to have anticancer properties. The present study investigated the anticancer effects of costunolide against the H1299 human non‑small‑cell lung cancer (NSCLC) cell line. Inhibition of cell viability by costunolide was assessed via a MTT assay. Furthermore, the apoptotic rate was detected using Annexin V/propidium iodide labeling. A colony forming cell assay was performed to investigate the antiproliferative effects of costunolide. Wound healing and Transwell assays were performed to determine the inhibitory effects of costunolide on migration and invasion, respectively. Western blot analysis was undertaken to determine protein expression, and reverse transcription‑quantitative PCR was performed to assess mRNA expression levels. The results demonstrated that costunolide inhibited the viability of H1299 cells, with a half maximal inhibitory concentration value of 23.93±1.67 µM and induced cellular apoptosis in a dose‑dependent manner. Furthermore, the colony formation, migrative and invasive abilities of the H1299 cells were inhibited in a dose‑ or time‑dependent manner. Sunitinib The protein expression levels of E‑cadherin increased and those of N‑cadherin decreased following treatment with costunolide, which suggested that costunolide inhibited epithelial‑to‑mesenchymal transition. The mRNA levels of B‑Raf, E‑cadherin, N‑cadherin, integrins α2 and β1, as well as matrix metalloproteinases 2 were also found to be regulated costunolide. These findings indicate the potential of costunolide in the treatment of NSCLC.Osteosarcoma (OS) is one of the most common malignant tumors in young adults and has a high distant metastasis rate. The p53 protein, a potent prognostic biomarker for patients with OS, is altered in ~50% of OS cases. p53 was reported to exert its effects through regulating the transcription of microRNAs (miRNAs/miRs) and other genes. In the present study, the expression of miR‑181b, a critical OS oncomiR, was shown to be significantly upregulated whereas p53 expression was downregulated within OS tissues and cells; in tissue samples, miR‑181b and p53 were negatively correlated. p53 inhibited the transcription of miR‑181b via targeting its promoter region, whereas miR‑181b bound the TP53 3'‑untranslated region (UTR) to inhibit p53 expression. miR‑181b silencing considerably increased p53, p21, and epithelial‑Cadherin protein levels but decreased Cyclin D1 protein levels in OS cells. In addition, miR‑181b inhibition reduced OS cell proliferation and invasion. In contrast, p53 knockdown had the opposite effects on these proteins and OS cell proliferation and invasion. Above all, p53 knockdown significantly attenuated the effects of miR‑181b inhibition. Moreover, OS cell xenograft assays further confirmed the roles of the miR‑181b/p53 axis in OS growth. In conclusion, miR‑181b and p53 are negatively regulated by one another and therefore form a negative feedback axis that regulates the proliferation and invasion abilities of OS cells. Targeting miR‑181b to inhibit its abnormal upregulation might be a potent strategy for OS treatment.Numerous studies have reported that oestrogens may contribute to the development of non‑small cell lung cancer (NSCLC). Although different steroidogenic enzymes have been detected in the lung, the precise mechanism leading to an exaggerated accumulation of active oestrogens in NSCLC remains unexplained. 17‑β‑Hydroxysteroid dehydrogenase type 2 (HSD17B2) is an enzyme involved in oestrogen and androgen inactivation by converting 17‑β‑oestradiol into oestrone, and testosterone into 4‑androstenedione. Therefore, the enzyme serves an important role in regulation of the intracellular availability of active sex steroids. This study aimed to determine the expression levels of HSD17B2 in lung cancer (LC) and adjacent histopathologically unchanged tissues obtained from 161 patients with NSCLC, and to analyse the association of HSD17B2 with clinicopathological features. For that purpose, reverse transcription‑quantitative PCR, western blotting and immunohistochemistry were conducted. The results revealed that the mRNA aHSD17B2 appears to be a frequent feature in NSCLC. Retrospective analysis suggests that the HSD17B2 mRNA and protein status might be independent prognostic factors in NSCLC and should be further investigated.Congenital generalized lipodystrophy (CGL) is a clinically and genetically heterogeneous condition with autosomal recessive inheritance. CGL is classified into four subtypes on the basis of causative genes. This study reported on a 2‑month‑old male infant diagnosed with CGL with generalized lipoatrophy and skin hyperpigmentation. Whole exome sequencing (WES) identified a heterozygous small insertion (c.545_546insCCG) in Berardinelli‑Seip congenital lipodystrophy 2 (BSCL2) that was inherited from the infant's mother. Copy number variation analysis using exome data suggested a heterozygous deletion involving exon 3 that was inherited from the infant's father. This finding was confirmed by multiplex ligation‑dependent probe amplification test. Gap‑PCR revealed breakpoints and confirmed a 1274 bp heterozygous deletion encompassing exon 3 of BSCL2 (c.213‑1081_c.294+111). This deletion is different from the founder 3.3 kb deletion involving exon 3 of BSCL2 in the Peruvian population. An 11‑bp microhomology at the breakpoints may mediate the deletion, and its presence indicates the independent origins of the exon 3 deletion between Chinese and Peruvian populations.
Homepage: https://www.selleckchem.com/products/Sunitinib-Malate-(Sutent).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team