Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Metallic nanocrystals (NCs) can be synthesized with tailored nonequilibrium shapes to enhance desired properties, e.g., octahedral fcc metal NCs optimize catalytic activity associated with 111 facets. However, maintenance of optimized properties requires stability against thermal reshaping. Thus, we analyze the reshaping of truncated fcc metal octahedra mediated by surface diffusion using a stochastic atomistic-level model with energetic input parameters for Pd. The model describes NC thermodynamics by an effective nearest-neighbor interaction and includes a realistic treatment of diffusive hopping for undercoordinated surface atoms. Kinetic Monte Carlo simulation reveals that the effective barrier, Eeff, for the initial stage of reshaping is strongly tied to the degree of truncation of the vertices in the synthesized initial octahedral shapes. This feature is elucidated via exact analytic determination of the energy variation along the optimal reshaping pathway at low-temperature (T), which involves transfer of atoms from truncated 100 vertex facets to form new layers on 111 side facets. Deviations from predictions of the low-T analysis due to entropic effects are more prominent for higher T and larger NC sizes.The enhancement of nonlinear optical effects via nanoscale engineering is a hot topic of research. Optical nanoantennas increase light-matter interaction and provide, simultaneously, a high throughput of the generated harmonics in the scattered light. However, nanoscale nonlinear optics has dealt so far with static or quasi-static configurations, whereas advanced applications would strongly benefit from high-speed reconfigurable nonlinear nanophotonic devices. Here we propose and experimentally demonstrate ultrafast all-optical modulation of the second harmonic (SH) from a single nanoantenna. Our design is based on a subwavelength AlGaAs nanopillar driven by a control femtosecond light pulse in the visible range. The control pulse photoinjects free carriers in the nanostructure, which in turn induce dramatic permittivity changes at the band edge of the semiconductor. This results in an efficient modulation of the SH signal generated at 775 nm by a second femtosecond pulse at the 1.55 μm telecommunications (telecom) wavelength. Our results can lead to the development of ultrafast, all optically reconfigurable, nonlinear nanophotonic devices for a broad class of telecom and sensing applications.In the process of spent fuel reprocessing, it is highly difficult to extract transplutonium elements from adjacent actinides. A deep understanding of the electronic structure of transplutonium complexes is essential for development of steady ligands for in-group separation of transplutonium actinides. In this work, we have systematically explored the potential in-group separation ability of transplutonium elements of typical quadridentate N-donor ligands (phenanthroline-derived bis-triazine, BTPhen derivatives) through quasi-relativistic density functional theory (DFT). this website Our calculations demonstrate that ligands with electron-donating groups have stronger coordination abilities, and the substitutions of Br and phenol at the 4-position of the 1,10-phenanthroline have a higher effect on the ligand than those at the 5-position. Bonding analysis indicates that the covalent interaction of An3+ complexes becomes stronger from Am to Cf apart from Cm, which is because the energy of the 5f orbital gradually decreases a ligands seem to have advantages in separation of californium from curium, while the DAPhen ligands possess stronger abilities to separate americium from curium. These results may afford some afflatus for the development of effective agents for in-group separation of transplutonium elements.Sonocatalytic nanoagents (SCNs), a kind of sonosensitizers, could catalyze oxygen to generate abundant reactive oxygen species (ROS) under stimulations of noninvasive and deep-penetrating ultrasound (US), which is commonly used for sonodynamic therapy (SDT) of tumors such as malignant melanoma. However, poor bioavailability of most SCNs and fast quenching of extracellular-generating ROS from SDT limit further applications of SCNs in the SDT of tumors. Herein, we synthesized a new kind of TiO2-based SCN functionalized with the malignant melanoma cell membrane (B16F10M) and programmed cell death-ligand 1 antibody (aPD-L1) for homology and immune checkpoint dual-targeted and enhanced sonodynamic tumor therapy. Under US irradiation, the synthesized SCN can catalytically generate a large amount of 1O2. In vitro experiments validate that functionalized SCNs exhibit precise targeting effects, high tumor cell uptake, and intracellular sonocatalytic killing of the B16F10 cells by a large amount of localized ROS. Utilizing the melanoma animal model, the functionalized SCN displays visible long-term retention in the tumor area, which assists the homology and immune checkpoint synergistically dual-targeted and enhanced in vivo SDT of the tumor. We suggest that this highly bioavailable and dual-functionalized SCN may provide a promising strategy and nanoplatform for enhancing sonodynamic tumor therapies.The reduction of [Fe(OEP)(NO)] has been studied in the presence of aprotic room-temperature ionic liquids (RTIL) and protic (PIL) ionic liquids dissolved within a molecular solvent (MS). The cyclic voltammetric results showed the formation of RTIL nanodomains at low concentrations of the RTIL/PIL solutions. The pKa values of the two PILs studied (i.e., trialkylammonium and [DBU-H]+-based ionic liquids) differed by four units in THF. While voltammetry in solutions containing all three RTILs showed similar potential shifts of the first reduction of [Fe(OEP)(NO)] to [Fe(OEP)(NO)]- at low concentrations, significant differences were observed at higher concentrations for the ammonium PIL. The trialkylammonium cation had previously been shown to protonate the FeNO8 species at room temperature. Visible and infrared spectroelectrochemistry revealed that the [DBU-H]+-based PIL formed hydrogen bonds with [Fe(OEP)(NO)]- rather than formally protonating it. Despite these differences, both PILs were able to efficiently reduce the nitrosyl species to the hydroxylamine complex, which could be further reduced to ammonia.
Here's my website: https://www.selleckchem.com/products/lly-283.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team