NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Marked and extented serotonin poisoning within a tramadol-poisoned affected individual using a pharmacokinetic examine.
To decrease colon polyp miss-rate during colonoscopy, a real-time detection system with high accuracy is needed. Recently, there have been many efforts to develop models for real-time polyp detection, but work is still required to develop real-time detection algorithms with reliable results. We use single-shot feed-forward fully convolutional neural networks (F-CNN) to develop an accurate real-time polyp detection system. F-CNNs are usually trained on binary masks for object segmentation. We propose the use of 2D Gaussian masks instead of binary masks to enable these models to detect different types of polyps more effectively and efficiently and reduce the number of false positives. The experimental results showed that the proposed 2D Gaussian masks are efficient for detection of flat and small polyps with unclear boundaries between background and polyp parts. The masks make a better training effect to discriminate polyps from the polyp-like false positives. The proposed method achieved state-of-the-art results on two polyp datasets. On the ETIS-LARIB dataset we achieved 86.54% recall, 86.12% precision, and 86.33% F1-score, and on the CVC-ColonDB we achieved 91% recall, 88.35% precision, and F1-score 89.65%.We propose HookNet, a semantic segmentation model for histopathology whole-slide images, which combines context and details via multiple branches of encoder-decoder convolutional neural networks. Concentric patches at multiple resolutions with different fields of view, feed different branches of HookNet, and intermediate representations are combined via a hooking mechanism. We describe a framework to design and train HookNet for achieving high-resolution semantic segmentation and introduce constraints to guarantee pixel-wise alignment in feature maps during hooking. We show the advantages of using HookNet in two histopathology image segmentation tasks where tissue type prediction accuracy strongly depends on contextual information, namely (1) multi-class tissue segmentation in breast cancer and, (2) segmentation of tertiary lymphoid structures and germinal centers in lung cancer. We show the superiority of HookNet when compared with single-resolution U-Net models working at different resolutions as well as with a recently published multi-resolution model for histopathology image segmentation. We have made HookNet publicly available by releasing the source code1 as well as in the form of web-based applications2,3 based on the grand-challenge.org platform.Altered functional connectivity patterns play an important role in explaining autism spectrum disorder related impairments. In order to examine such connectivity, resting state functional MRI is the most commonly used technique. To date, the majority of works in this area examine a whole time series of brain activation as a discrete stationary process. This study proposes a more detailed analysis of how functional connectivity fluctuates over time and how it is used to quantify instances demonstrating overconnectivity or underconnectivity. Non-parametric surrogates test identifies the areas where underconnectivity or overconnectivity correlate with the Autism Diagnosis Observation Schedule. In addition, this study shows how the areas identified affect the subjects behaviors. Our ultimate goal is a personalized autism diagnosis and treatment CAD system, where each subject impairments are distinctly mapped so they can be addressed with targeted treatments.Left ventricular (LV) segmentation is essential for the early diagnosis of cardiovascular diseases, which has been reported as the leading cause of death all over the world. However, automated LV segmentation from cardiac magnetic resonance images (CMRI) using the traditional convolutional neural networks (CNNs) is still a challenging task due to the limited labeled CMRI data and low tolerances to irregular scales, shapes and deformations of LV. In this paper, we propose an automated LV segmentation method based on adversarial learning by integrating a multi-stage pose estimation network (MSPN) and a co-discrimination network. Different from existing CNNs, we use a MSPN with multi-scale dilated convolution (MDC) modules to enhance the ranges of receptive field for deep feature extraction. To fully utilize both labeled and unlabeled CMRI data, we propose a novel generative adversarial network (GAN) framework for LV segmentation by combining MSPN with co-discrimination networks. Specifically, the labeled CMRI are first used to initialize our segmentation network (MSPN) and co-discrimination network. Our GAN training includes two different kinds of epochs fed with both labeled and unlabeled CMRI data alternatively, which are different from the traditional CNNs only relied on the limited labeled samples to train the segmentation networks. As both ground truth and unlabeled samples are involved in guiding training, our method not only can converge faster but also obtain a better performance in LV segmentation. Our method is evaluated using MICCAI 2009 and 2017 challenge databases. AY-22989 Experimental results show that our method has obtained promising performance in LV segmentation, which also outperforms the state-of-the-art methods in terms of LV segmentation accuracy from the comparison results.
Asthma prevalence among COVID-19 patients seems to be surprisingly low. However the clinical profile of COVID-19 asthmatic patients and potential determinants of higher susceptibility/worse outcome have been scarcely investigated. We aimed to describe the prevalence and features of asthmatic patients hospitalized for COVID-19 and to explore the association between their clinical asthma profile and COVID-19 severity.

Medical records of patients admitted to COVID-Units of six Italian cities major hospitals were reviewed. Demographic and clinical data were analyzed and compared according to the COVID-19 outcome (death/need for ventilation vs discharge at home without requiring invasive procedures).

Within the COVID-Units population (n=2000) asthma prevalence was 2.1%. Among the asthmatics the mean age was 61.1 years and 60% were females. Around half of patients were atopic, blood eosinophilia was normal in most of patients. An asthma exacerbation in the 6 months before the Covid-Unit admittance was reported by 18% of patients.
Read More: https://www.selleckchem.com/products/Rapamycin.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.