Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Identifying moving synaptic vesicle complexes and isolating specific proteins present within such complexes in vivo is challenging. Here we detail a protocol that we have developed that is designed to simultaneously visualize the axonal transport of two fluorescently tagged synaptic vesicle proteins in living Drosophila larval segmental nerves in real time. Using a beam-splitter and split view software, larvae expressing GFP-tagged Synaptobrevin (Syb) and mRFP-tagged Rab4-GTPase or YFP-tagged Amyloid Precursor protein (APP) and mRFP-tagged Rab4-GTPase are imaged simultaneously using separate wavelengths. Merged kymographs from the two wavelengths are evaluated for colocalization analysis. Vesicle velocity analysis can also be done. Such analysis enables us to visualize the motility behaviors of two synaptic proteins present on a single vesicle complex and identify candidate proteins moving on synaptic vesicles in vivo, under physiological conditions.Axonal transport, which is the process mediating the active shuttling of a variety cargoes from one end of an axon to the other, is essential for the development, function, and survival of neurons. Impairments in this dynamic process are linked to diverse nervous system diseases and advanced ageing. It is thus essential that we quantitatively study the kinetics of axonal transport to gain an improved understanding of neuropathology as well as the molecular and cellular mechanisms regulating cargo trafficking. One of the best ways to achieve this goal is by imaging individual, fluorescent cargoes in live systems and analyzing the kinetic properties of their progression along the axon. selleck products We have therefore developed an intravital technique to visualize different organelles, such as signaling endosomes and mitochondria, being actively transported in the axons of both motor and sensory neurons in live, anesthetized rodents. In this chapter, we provide step-by-step instructions on how to deliver specific organelle-targeting, fluorescent probes using several routes of administration to image individual cargoes being bidirectionally transported along axons within the exposed sciatic nerve. This method can provide detailed, physiologically relevant information on axonal transport, and is thus poised to elucidate mechanisms regulating this process in both health and disease.In vivo calcium imaging in zebrafish provides the ability to investigate calcium dynamics within neurons. Utilizing genetically encoded calcium sensors it is possible to monitor calcium signals within a single axon during axon injury and degeneration with high temporal and spatial resolution. Here we will describe in vivo, time-lapse confocal imaging methods of calcium imaging. Imaging of calcium dynamics with genetically encoded calcium sensors (GECS) within living axons can serve as a method to assess axonal physiology and effects of pharmacologic and genetic manipulation, as well as characterize responses to different injury models.Transmission electron microscopy of central nervous system white matter has provided unparalleled access to the ultrastructural features of axons, their myelin sheaths, and the major cells of white matter; namely, oligodendrocytes, oligodendrocyte precursors, astrocytes, and microglia. In particular, it has been invaluable in elucidating pathological changes in axons and myelin following experimentally induced injury or genetic alteration, in animal models. While also of value in the examination of human white matter, the tissue is rarely fixed adequately for the types of detailed analyses that can be performed on well-preserved samples from animal models, perfusion fixed at the time of death. In this chapter we describe methods for obtaining, processing, and visualizing white matter samples using transmission electron microscopy of perfusion fixed tissue and for unbiased morphometry of white matter, with particular emphasis on axon and myelin pathology. Several advanced electron microscopy techniques are now available, but this method remains the most expedient and accessible for routine ultrastructural examination and morphometry.Axon degeneration destructs functional connectivity of neural circuits and is one of the common, key pathological features of different neurodegenerative diseases. However, conventional histochemistry methods, which largely rely on tissue sections, have intrinsic limitations in examining the 3D distribution of axonal structures on the whole-tissue level. This technical shortcoming has continuously impeded our in-depth understanding of pathological axon degeneration in many scenarios. To overcome such drawback encountered in the research field, we describe here a general protocol of whole-tissue immunolabeling and 3D fluorescence imaging technique to visualize axon degeneration in the intact, unsectioned mouse tissues. In particular, experimental steps of tissue harvesting, whole-tissue immunolabeling, tissue optical clearing, and 3D fluorescence imaging have been systematically optimized, which makes the protocol effective for assessing integrity of the axonal structures in a variety of tissues. Notably, it has enabled the 3D fluorescence imaging of chemotherapy- or traumatic injury-induced axon degeneration within the bones (e.g., femurs) or bone-containing tissues (e.g., hindpaws), which had previously been inaccessible to conventional histochemistry methods. This protocol is therefore readily compatible with many areas of the research on axon degeneration and is poised to serve the field in future investigations.Injury to the sciatic nerve leads to degeneration and debris clearance in the area distal to the injury site, a process known as Wallerian degeneration. Immune cell infiltration into the distal sciatic nerve plays a major role in the degenerative process and subsequent regeneration of the injured motor and sensory axons. While macrophages have been implicated as the major phagocytic immune cell participating in Wallerian degeneration, recent work has found that neutrophils, a class of short-lived, fast responding white blood cells, also significantly contribute to the clearance of axonal and myelin debris. Detection of specific myeloid subtypes can be difficult as many cell-surface markers are often expressed on both neutrophils and monocytes/macrophages. Here we describe two methods for detecting neutrophils in the axotomized sciatic nerve of mice using immunohistochemistry and flow cytometry. For immunohistochemistry on fixed frozen tissue sections, myeloperoxidase and DAPI are used to specifically label neutrophils while a combination of Ly6G and CD11b are used to assess the neutrophil population of unfixed sciatic nerves using flow cytometry.
Read More: https://www.selleckchem.com/products/ly333531.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team