Notes
![]() ![]() Notes - notes.io |
The results show differences of up to 40% compared with other models.The goal of this paper is to explore the ability of the human female urogenital sinus immediately below the bladder (proximal urethra) to undergo prostatic development in response to dihydrotestosterone (DHT). Selleck SB203580 To establish this idea, xenografts of human fetal female proximal urethra were grown in castrated nude mouse hosts receiving a subcutaneous DHT pellet. To verify the prostatic nature of the resultant glands, DHT-treated human fetal female urethral xenografts were compared with human fetal prostatic xenografts (derived from male specimens) grown in untreated and DHT-treated castrated mouse hosts and human fetal female proximal urethral xenografts grown in untreated castrated hosts. The resultant glands observed in DHT-treated human fetal female proximal urethral xenografts expressed 3 prostate-specific markers, NKX3.1, prostate specific antigen and prostatic acid phosphatase as well as the androgen receptor. Glands induced by DHT exhibited a protein expression profile of additional immunohistochemical markers (seven keratins, RUNX1, ESR2, TP63 and FOXA1) consistent with the unique spatial pattern of these proteins in prostatic ducts. Xenografts of human fetal female proximal urethra grown in DHT-treated hosts also expressed one of the salient features of prostatic development, namely androgen responsiveness. The experimental induction of prostatic differentiation from human fetal female proximal urethra makes possible future in-depth analysis of the molecular pathways directly involved in initiation of human prostatic development and subsequent epithelial differentiation, and more important whether the molecular pathways involved in human prostatic development are similar/identical versus different from that in murine prostatic development.Chitinase 3-like protein 1(CHI3L1) participates in physiological and pathophysiological process, such as cell survival, cell proliferation, tissue remodeling, angiogenesis, etc. Some studies demonstrated that CHI3L1 is liver-enriched and has better application value in staging liver fibrosis than platelet ratio index(APRI) and fibrosis-4 index(FIB-4) and that CHI3L1 can be used in monitoring the prognosis of hepatocellular carcinoma (HCC). In this review, we summarized the pathophysiological role and the diagnostic value of CHI3L1 in liver fibrosis in different background and HCC.At the end of 2019, the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China. Currently, it is breaking out globally and posing a serious threat to public health. The typically clinical characteristics of COVID-19 patients were fever and respiratory symptoms, and a proportion of patients were accompanied by extrapulmonary symptoms including cardiac injury, kidney injury, liver injury, digestive tract injury, and neurological symptoms. Angiotensin converting enzyme 2 (ACE2) has been proven to be a major receptor for SARS-CoV-2 and could mediate virus entry into cells. And transmembrane protease serine 2 (TMPRSS2) could cleave the spike (S) protein of SARS-CoV-2, which facilitates the fusion of SARS-CoV-2 and cellular membranes. The mRNA expressions of both ACE2 and TMPRSS2 were observed in the heart, digestive tract, liver, kidney, brain and other organs. SARS-CoV-2 may have a capacity to infect extrapulmonary organs due to the expressions of ACE2 and TMPRSS2 in the cells and tissues of these organs. It seems that there is a potential involvement of ACE2 and TMPRSS2 expressions in the virus infection of extrapulmonary organs and the manifestation of symptoms related to these organs in patients with COVID-19. Here, we revealed the expressions of ACE2 and TMPRSS2 in extrapulmonary organs, and we also summarized the clinical manifestation and the management of extrapulmonary complications in patients with COVID-19.Icariin has a variety of biological activities, such as lipid-lowering effects, and has attracted widespread attention in recent years. However, it is not clear whether lipid-lowering effect is that multiple metabolites or a particular component plays a major role. It is known that icariin has a variety of metabolites in the body, including icariside I, icariside II, icaritin, desmethylicaritin, and other metabolites. Many of these studies have shown that the metabolites of icariin have a lipid-lowering effect. This paper focuses on the lipid-regulating effects of icariin and its metabolites in vitro and in vivo, and highlights the mechanisms involved. Icariin may have potential in the development of therapeutic strategies to regulate lipid metabolism.The bitter melon (Momordica charantia) is a medical food with well-documented hypoglycemic and anti-hyperlipidemic activities. Previous studies showed that the M. charantia fruit (MC) could modulate the gut microbiota, but whether this modulation is essential for MC's pharmacological effects is largely unknown. Here, we assessed the causality of gut microbes in MC-elicited anti-hyperlipidemic effects for the first time. Oral administration of MC significantly prevented hyperlipidemia, but this amelioration substantially diminished when co-treated with antibiotics. Transplantation of gut flora from MC-treated donor mice also significantly decreased serum lipids. The microbiological analysis revealed that MC moderately increased diversity and shifted the overall structure of gut microbiota. It selectively enhanced the relative abundance of short-chain fatty acid (SCFAs)-producing genera and increased fecal SCFAs content. These results demonstrate that M. charantia fruit (MC) may exert an anti-hyperlipidemic effect through modulating gut microbes and increasing SCFAs production.Radiotherapy has significantly improved the survival of cancer patients but is also associated with several adversities, including radiation-induced carotid injury (RICI). The RICI mechanisms are complex, including vessel inflammatory injury, carotid atherosclerosis, intimal proliferation, media necrosis, and peri-adventitial fibrosis. The main manifestation and adverse consequence of RICI is carotid artery stenosis (CAS), which can lead to stroke and transient ischemic attack. Currently, carotid artery injury is primarily diagnosed via color-coded duplex sonography. Early detection of traumatic changes in the carotid artery depends on measurements of carotid intima-media thickness; serum biomarker testing also shows great potential. CAS is mainly treated with carotid endarterectomy or carotid angioplasty and stent implantation. Notably, bone marrow mesenchymal stem cells are advantageous in RICI treatment and reduce carotid inflammation, oxidative stress, and delaying atherosclerosis. This review summarizes the mechanisms, examination methods, and latest treatments for RICI to provide data for its clinical prevention and treatment.
Website: https://www.selleckchem.com/products/SB-203580.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team