Notes
![]() ![]() Notes - notes.io |
Multi-fragmented fractures of the proximal humerus are difficult to treat, especially in the case of osteoporotic bone. Intra-operative risks include cartilage damage when inserting multiple screws. A common post-operative complication is distal-varus collapse of the head. The aim of this study was to investigate if an Innovative technique (reduced number of screws and injection of a beta-TCP additivated partially resorbable cement) provides the same or better stability of the reconstructed head compared to the Standard technique (using more screws). A four-fragment fracture was simulated in six pairs of humeri, with partial removal of the cancellous bone to simulate osteoporotic "eggshell" defect. One humerus of each pair was repaired with a Standard (locking plate, 2 cortical and 6 locking screws), and the other with the Innovative technique (same plate, 2 cortical and only 3 locking screws, plus cement injection). The reconstructed specimens were subjected to a biomechanical test where a cyclic force of increasing amplitude was applied axially until failure. The Innovative reconstructions withstood a force 3.49 times larger than the contralateral Standard reconstructions before failure started. The maximum force before final collapse for the Innovative reconstructions was 4.24 times larger than the contralateral Standard reconstructions. These differences were statistically significant. The Innovative reconstructions, based on fewer screws and beta-TCP additivated acrylic cement, showed positive results, demonstrating better biomechanical properties compared to the Standard reconstructions. These laboratory findings, along with the advantages of a reduced number of screws, may help perform a surgically safer, and more effective procedure in osteoporotic patients.Tips and falls are the most prominent causes of wheelchair accidents that occur when driving on uneven terrains and less accessible environments. The Mobility Enhancement Robotic Wheelchair (MEBot) was designed to improve the stability of Electric Powered Wheelchairs (EPW) when driving over these environments. MEBot offers six independently height-adjustable wheels to control attitude of its seat over uneven and angled terrains. Its attitude control application uses an inertial measurement unit to detect seat angles changes to adjust each wheel-height accordingly. MEBot was compared to commercial EPWs in terms of EPW performance (seat angle changes and response time) and participant perception (satisfaction and task-load demand) towards each device. Ten participants drove their own EPW and MEBot for five trials each through driving tasks that replicated outdoor environments. Results showed less change in the pitch angle when driving up and down a 10° slope using MEBot (5.6 ± 1.6°, 6.6 ± 0.5°) compared to the participants' own EPW (14.6 ± 2.6°, 12.1 ± 2.6°). However, MEBot required 7.8 ± 3.0 s to self-adjust to the minimum angle when driving over the tasks. Participants reported no difference in satisfaction and task load demand between EPWs due to similarities in comfort and ease-of-use. Improving the speed and efficiency of MEBot's attitude control application will be addressed in future work based upon participants' feedback.Since theoretical models provide data that cannot be otherwise gathered, numerical methods applied to medical devices analysis have emerged as fundamental tool in preclinical development. Large efforts were done to study mechanical and drug-eluting properties in stents but often the coating modelling is neglected. This work presents a finite element framework to calculate mechanical loads and drug distribution in three commercial drug-eluting stents (Palmaz-Schatz, Palmaz Genesis and Multi Link Vision), to check coatings strength and drug distribution maps in biological tissues. The promising copolymer poly(methylmethacrylate-co-n-butylmethacrylate), loaded with paclitaxel, is analyzed. Results demonstrated that the coating undergoes localized plastic phenomena, and calculated stresses are lower than the ultimate stress, ensuring coating integrity. Computed drug concentration depends on stent geometry and its values are in all cases lower than the toxicity level for this drug.Gait analysis is the systematic study of human walking. The analysis of gait signals from the lower trunk, acquired through accelerometers, begins with the proper identification of gait cycles. The goal of this work is to supplement gait-event based segmentation methods, tested for unimpaired and impaired populations, so that their need to calibrate or rely on pre-defined thresholds is overcome, and to implement strategies that reduce step-detection errors. A new system for the automatic extraction and analysis of gait cycles from acceleration signals of the lower trunk, combining knowledge from previous strategies with a dynamic time warping function, is presented. Performance was tested on gait signals from public databases. Sensitivities in step detection above 99.95% were achieved, with a positive predictive value of 100.00%. Step-correction strategies reduced the number of incorrect detections from 57 to 3 of 7056 steps. check details Bland-Altman plots and equivalence tests performed on cycle times by the proposed method and selected references showed good agreement, with mean differences below 0.003 s, and percent errors of 2%. This method may give place to a research tool for the automatic analysis of signals from subjects in a variety of cases.Patient-specific computational fluid dynamics is a powerful tool for investigating the hemodynamic risk in coronary arteries. Proper setting of flow boundary conditions in computational hemodynamic models of coronary arteries is one of the sources of uncertainty weakening the findings of in silico experiments, in consequence of the challenging task of obtaining in vivo 3D flow measurements within the clinical framework. Accordingly, in this study we evaluated the influence of assumptions on inflow velocity profile shape on coronary artery hemodynamics. To do that, (1) ten left anterior descending coronary artery (LAD) geometries were reconstructed from clinical angiography, and (2) eleven velocity profiles with realistic 3D features such as eccentricity and differently shaped (single- and double-vortex) secondary flows were generated analytically and imposed as inflow boundary conditions. Wall shear stress and helicity-based descriptors obtained prescribing the commonly used parabolic velocity profile were compared with those obtained with the other velocity profiles.
Read More: https://www.selleckchem.com/products/cp21r7-cp21.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team