Notes
![]() ![]() Notes - notes.io |
The results suggest that Hyscu-H is likely to be one of the most abundant satellite DNA repeats in H. scutellatus.Recent studies have demonstrated that numerous long noncoding RNAs (ncRNAs having more than 200 nucleotide base pairs (lncRNAs)) actually encode functional micropeptides, which likely represents the next regulatory biology frontier. Thus, identification of coding lncRNAs from ever-increasing lncRNA databases would be a bioinformatic challenge. Here we employed the Coding Potential Alignment Tool (CPAT), Coding Potential Calculator 2 (CPC2), LGC web server, Coding-Non-Coding Identifying Tool (CNIT), RNAsamba, and MicroPeptide identification tool (MiPepid) to analyze approximately 21,000 zebrafish lncRNAs and computationally to identify 2730-6676 zebrafish lncRNAs with high coding potentials, including 313 coding lncRNAs predicted by all the six bioinformatic tools. We also compared the sensitivity and specificity of these six bioinformatic tools for identifying lncRNAs with coding potentials and summarized their strengths and weaknesses. These predicted zebrafish coding lncRNAs set the stage for further experimental studies.Rotavirus is the leading cause of severe acute childhood gastroenteritis, responsible for more than 128,500 deaths per year, mainly in low-income countries. Although the mortality rate has dropped significantly since the introduction of the first vaccines around 2006, an estimated 83,158 deaths are still preventable. The two main vaccines currently deployed, Rotarix and RotaTeq, both live oral vaccines, have been shown to be less effective in developing countries. In addition, they have been associated with a slight risk of intussusception, and the need for cold chain maintenance limits the accessibility of these vaccines to certain areas, leaving 65% of children worldwide unvaccinated and therefore unprotected. check details Against this backdrop, here we review the main vaccines under development and the state of the art on potential alternatives.Generic drugs were instituted in 1984 in the United States. Since that time, many studies have been conducted in several countries into consumer attitude and behavior when purchasing generic drugs. Understanding the factors that can influence attitude and purchasing intention in this segment has been a challenge. Thus, this paper aims to present a mapping of the literature on the attitude toward and intention to purchase generic drugs and capture insights that can help define and improve promotional strategies for the use of these products. To identify articles related to the theme, we selected the Web of Science, Science Direct, Scopus, Lilacs, Pubmed Central, Springer, and Embase databases time limited to June 2020, using the keywords "generic drug", "purchase intention", and "attitude". The results indicate that this topic is relatively new, with publications in the leading journals in the area demonstrating its importance. Analysis revealed five strategic insights and showed that the research theme could be grouped into three clusters (i) consumer attitude and behavior, (ii) perspective of patients and health professionals, and (iii) assessment of the risks associated with generic medications to determine which factors can influence purchase intention, providing decision makers with a broader view with regard to directing public policy strategies in healthcare.This paper proposes a new type of tactile transfer cell which can be effectively applied to robot-assisted minimally invasive surgery (RMIS). The proposed tactile device is manufactured from two smart materials, a magnetorheological fluid (MRF) and a magnetorheological elastomer (MRE), whose viscoelastic properties are controllable by an external magnetic field. Thus, it can produce field-dependent repulsive forces which are equivalent to several human organs (or tissues) such as a heart. As a first step, an appropriate tactile sample is made using both MRF and MRE associated with porous foam. Then, the microstructures of these materials taken from Scanning Electron Microscope (SEM) images are presented, showing the particle distribution with and without the magnetic field. Subsequently, the field-dependent repulsive force of the sample, which is equivalent to the stress relaxation property of viscoelastic materials, are measured at several compressive deformation depths. Then, the measured values are compared with the calculated values obtained from Young's modulus of human tissue data via the finite element method. It is identified from this comparison that the proposed tactile transfer cell can mimic the repulsive force (or hardness) of several human organs. This directly indicates that the proposed MR materials-based tactile transfer cell (MRTTC in short) can be effectively applied to RMIS in which the surgeon can feel the strength or softness of the human organ by just changing the magnetic field intensity. In this work, to reflect a more practical feasibility, a psychophysical test is also carried out using 20 volunteers, and the results are analyzed, presenting the standard deviation.Arrhythmogenic cardiomyopathy (AC) is a familial cardiac disorder at high risk of arrhythmic sudden death in the young and athletes. AC is hallmarked by myocardial replacement with fibro-fatty tissue, favoring life-threatening cardiac arrhythmias and contractile dysfunction. The AC pathogenesis is unclear, and the disease urgently needs mechanism-driven therapies. Current AC research is mainly focused on 'desmosome-carrying' cardiomyocytes, but desmosomal proteins are also expressed by non-myocyte cells, which also harbor AC variants, including mesenchymal stromal cells (MSCs). Consistently, cardiac-MSCs contribute to adipose tissue in human AC hearts. We thus approached AC as a multicellular disorder, hypothesizing that it also affects extra-cardiac bone marrow (BM)-MSCs. Our results show changes in the desmosomal protein profile of both cardiac- and BM- MSCs, from desmoglein-2 (Dsg2)-mutant mice, accompanied with profound alterations in cytoskeletal organization, which are directly caused by AC-linked DSG2 downregulation. In addition, AC BM-MSCs display increased proliferation rate, both in vitro and in vivo, and, by using the principle of the competition homing assay, we demonstrated that mutant circulating BM-MSCs have increased propensity to migrate to the AC heart. Taken altogether, our results indicate that cardiac- and BM- MSCs are additional cell types affected in Dsg2-linked AC, warranting the novel classification of AC as a multicellular and multiorgan disease.
Homepage: https://www.selleckchem.com/products/PLX-4032.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team