Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Moreover, our method is generalizable to other person image generation tasks defined on semantic maps, e.g.,clothing texture transfer, controlled image manipulation, and virtual try-on. Experimental results on DeepFashion and Market-1501 datasets demonstrate the superiority of our method, especially in keeping better body shapes and clothing attributes, as well as rendering structure-coherent backgrounds.Charts are useful communication tools for the presentation of data in a visually appealing format that facilitates comprehension. There have been many studies dedicated to chart mining, which refers to the process of automatic detection, extraction and analysis of charts to reproduce the tabular data that was originally used to create them. By allowing access to data which might not be available in other formats, chart mining facilitates the creation of many downstream applications. This paper presents a comprehensive survey of approaches across all components of the automated chart mining pipeline such as (i) automated extraction of charts from documents; (ii) processing of multi-panel charts; (iii) automatic image classifiers to collect chart images at scale; (iv) automated extraction of data from each chart image, for popular chart types as well as selected specialized classes; (v) applications of chart mining; and (vi) datasets for training and evaluation, and the methods that were used to build them. Finally, we summarize the main trends found in the literature and provide pointers to areas for further research in chart mining.Since its introduction in 2018, EPIC-KITCHENS has attracted attention as the largest egocentric video benchmark, offering a unique viewpoint on people's interaction with objects, their attention, and even intention. In this paper, we detail how this large-scale dataset was captured by 32 participants in their native kitchen environments, and densely annotated with actions and object interactions. Our videos depict nonscripted daily activities, as recording is started every time a participant entered their kitchen. Recording took place in 4 countries by participants belonging to 10 different nationalities, resulting in highly diverse kitchen habits and cooking styles. Our dataset features 55 hours of video consisting of 11.5M frames, which we densely labelled for a total of 39.6K action segments and 454.2K object bounding boxes. α-Conotoxin GI mw Our annotation is unique in that we had the participants narrate their own videos (after recording), thus reflecting true intention, and we crowd-sourced ground-truths based on these. We describe our object, action and anticipation challenges, and evaluate several baselines over two test splits, seen and unseen kitchens. We introduce new baselines that highlight the multimodal nature of the dataset and the importance of explicit temporal modelling to discriminate fine-grained actions (e.g. 'closing a tap' from 'opening' it up).One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously, with the former suffering much from extreme foreground-background class imbalance issue due to the large number of anchors. This paper alleviates this issue by proposing a novel framework to replace the classification task in one-stage detectors with a ranking task, and adopting the Average-Precision loss (AP-loss) for the ranking problem. Due to its non-differentiability and non-convexity, the AP-loss cannot be optimized directly. For this purpose, we develop a novel optimization algorithm, which seamlessly combines the error-driven update scheme in perceptron learning and backpropagation algorithm in deep networks. We provide in-depth analyses on the good convergence property and computational complexity of the proposed algorithm, both theoretically and empirically. Experimental results demonstrate notable improvement in addressing the imbalance issue in object detection over existing AP-based optimization algorithms. An improved state-of-the-art performance is achieved in one-stage detectors based on AP-loss over detectors using classification-losses on various standard benchmarks. The proposed framework is also highly versatile in accommodating different network architectures.OBJECTIVE Recent advances in light-sheet fluorescence microscopy (LSFM) enable 3-dimensional (3-D) imaging of cardiac architecture and mechanics in toto. However, segmentation of the cardiac trabecular network to quantify cardiac injury remains a challenge. METHODS We hereby employed "subspace approximation with augmented kernels (Saak) transform" for accurate and efficient quantification of the light-sheet image stacks following chemotherapy-treatment. We established a machine learning framework with augmented kernels based on the Karhunen-Loeve Transform (KLT) to preserve linearity and reversibility of rectification. RESULTS The Saak transform-based machine learning enhances computational efficiency and obviates iterative optimization of cost function needed for neural networks, minimizing the number of training datasets for segmentation in our scenario. The integration of forward and inverse Saak transforms can also serve as a light-weight module to filter adversarial perturbations and reconstruct estimated images, salvaging robustness of existing classification methods. The accuracy and robustness of the Saak transform are evident following the tests of dice similarity coefficients and various adversary perturbation algorithms, respectively. The addition of edge detection further allows for quantifying the surface area to volume ratio (SVR) of the myocardium in response to chemotherapy-induced cardiac remodeling. CONCLUSION The combination of Saak transform, random forest, and edge detection augments segmentation efficiency by 20-fold as compared to manual processing. SIGNIFICANCE This new methodology establishes a robust framework for post light-sheet imaging processing, and creating a data-driven machine learning for automated quantification of cardiac ultra-structure.OBJECTIVE Global Maxwell Tomography (GMT) is a recently introduced volumetric technique for noninvasive estimation of electrical properties (EP) from magnetic resonance measurements. Previous work evaluated GMT using ideal radiofrequency (RF) excitations. The aim of this simulation study was to assess GMT performance with a realistic RF coil. METHODS We designed a transmit-receive RF coil with 8 decoupled channels for 7T head imaging. We calculated the RF transmit field (B +1 1) inside heterogeneous head models for different RF shimming approaches, and used them as input for GMT to reconstruct EP for all voxels. RESULTS Coil tuning/decoupling remained relatively stable when the coil was loaded with different head models. Mean error in EP estimation changed from 7.5% to 9.5% and from 4.8% to $7.2% for relative permittivity and conductivity, respectively, when changing head model without re-tuning the coil. Results slightly improved when an SVD-based RF shimming algorithm was applied, in place of excitation with one coil at a time.
Homepage: https://www.selleckchem.com/products/alpha-conotoxin-gi.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team