Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Finally, all extracted features are linked with relevant subjective scores to conduct quality regression via random forest. Experimental results on the ESPL-LIVE HDR database demonstrate that the proposed RSRA-BTMI method is superior to the existing state-of-the-art blind TMI quality assessment methods.In the era of a large number of tools and applications that constantly produce massive amounts of data, their processing and proper classification is becoming both increasingly hard and important. This task is hindered by changing the distribution of data over time, called the concept drift, and the emergence of a problem of disproportion between classes-such as in the detection of network attacks or fraud detection problems. In the following work, we propose methods to modify existing stream processing solutions-Accuracy Weighted Ensemble (AWE) and Accuracy Updated Ensemble (AUE), which have demonstrated their effectiveness in adapting to time-varying class distribution. The introduced changes are aimed at increasing their quality on binary classification of imbalanced data. The proposed modifications contain the inclusion of aggregate metrics, such as F1-score, G-mean and balanced accuracy score in calculation of the member classifiers weights, which affects their composition and final prediction. Moreover, the impact of data sampling on the algorithm's effectiveness was also checked. Complex experiments were conducted to define the most promising modification type, as well as to compare proposed methods with existing solutions. Experimental evaluation shows an improvement in the quality of classification compared to the underlying algorithms and other solutions for processing imbalanced data streams.With the rapid development of social networks, it has become extremely important to evaluate the propagation capabilities of the nodes in a network. Related research has wide applications, such as in network monitoring and rumor control. However, the current research on the propagation ability of network nodes is mostly based on the analysis of the degree of nodes. The method is simple, but the effectiveness needs to be improved. Based on this problem, this paper proposes a method that is based on Tsallis entropy to detect the propagation ability of network nodes. This method comprehensively considers the relationship between a node's Tsallis entropy and its neighbors, employs the Tsallis entropy method to construct the TsallisRank algorithm, and uses the SIR (Susceptible, Infectious, Recovered) model for verifying the correctness of the algorithm. The experimental results show that, in a real network, this method can effectively and accurately evaluate the propagation ability of network nodes.This review illustrates how Local Fermi Liquid (LFL) theories describe the strongly correlated and coherent low-energy dynamics of quantum dot devices. This approach consists in an effective elastic scattering theory, accounting exactly for strong correlations. Here, we focus on the mesoscopic capacitor and recent experiments achieving a Coulomb-induced quantum state transfer. Extending to out-of-equilibrium regimes, aimed at triggered single electron emission, we illustrate how inelastic effects become crucial, requiring approaches beyond LFLs, shedding new light on past experimental data by showing clear interaction effects in the dynamics of mesoscopic capacitors.This paper studies the discrete-time Poisson channel and the noiseless binary channel where, after recording a 1, the channel output is stuck at 0 for a certain period; this period is called the "dead time." The communication capacities of these channels are analyzed, with main focus on the regime where the allowed average input power is close to zero, either because the bandwidth is large, or because the available continuous-time input power is low.This paper presents anomaly detection in activities of daily living based on entropy measures. It is shown that the proposed approach will identify anomalies when there are visitors representing a multi-occupant environment. Residents often receive visits from family members or health care workers. Therefore, the residents' activity is expected to be different when there is a visitor, which could be considered as an abnormal activity pattern. Identifying anomalies is essential for healthcare management, as this will enable action to avoid prospective problems early and to improve and support residents' ability to live safely and independently in their own homes. Entropy measure analysis is an established method to detect disorder or irregularities in many applications however, this has rarely been applied in the context of activities of daily living. An experimental evaluation is conducted to detect anomalies obtained from a real home environment. Experimental results are presented to demonstrate the effectiveness of the entropy measures employed in detecting anomalies in the resident's activity and identifying visiting times in the same environment.Medical image segmentation is an important part of medical image analysis. With the rapid development of convolutional neural networks in image processing, deep learning methods have achieved great success in the field of medical image processing. Deep learning is also used in the field of auxiliary diagnosis of glaucoma, and the effective segmentation of the optic disc area plays an important assistant role in the diagnosis of doctors in the clinical diagnosis of glaucoma. Previously, many U-Net-based optic disc segmentation methods have been proposed. However, the channel dependence of different levels of features is ignored. The performance of fundus image segmentation in small areas is not satisfactory. In this paper, we propose a new aggregation channel attention network to make full use of the influence of context information on semantic segmentation. Different from the existing attention mechanism, we exploit channel dependencies and integrate information of different scales into the attention mechanism. dWIZ-2 mw At the same time, we improved the basic classification framework based on cross entropy, combined the dice coefficient and cross entropy, and balanced the contribution of dice coefficients and cross entropy loss to the segmentation task, which enhanced the performance of the network in small area segmentation. The network retains more image features, restores the significant features more accurately, and further improves the segmentation performance of medical images. We apply it to the fundus optic disc segmentation task. We demonstrate the segmentation performance of the model on the Messidor dataset and the RIM-ONE dataset, and evaluate the proposed architecture. Experimental results show that our network architecture improves the prediction performance of the base architectures under different datasets while maintaining the computational efficiency. The results render that the proposed technologies improve the segmentation with 0.0469 overlapping error on Messidor.
My Website: https://www.selleckchem.com/products/dwiz-2.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team