NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Increased S100B term throughout Big t and N lymphocytes inside natural preterm delivery as well as preeclampsia.
Experiments with animal models of epilepsy have consistently shown that focal cooling of epilepsy-induced brain region reversibly suppresses or terminates epileptic discharge activity. https://www.selleckchem.com/products/cm-4620.html Recently, we formulated a physiologically plausible temperature dependence in a neural mass model that can reproduce the effect of focal cooling on epileptic discharge activity. This can be used to implement a temperature control in an implantable cooling device for thermal neuromodulation of the epileptogenic zone in patients with partial epilepsy when seizure activity is detected. However, there have been no experiments that looked into the effect of focal cooling in animal models of epilepsy with secondary generalization in which the seizure activity spreads from the pathologic region to other regions of the brain. Using the temperature-dependent neural mass model and a physiological coupling model, we show that focal cooling stops the propagation of low-frequency discharge activity; on the other hand, it increases the amount of coupling required to propagate high-frequency discharge activity. Moreover, discharge activities that are propagated with cooling are lower in both magnitude and frequency compared to those propagated without cooling. These results suggest the feasibility of focal cooling as an effective alternative therapeutic treatment for medically intractable partial epilepsy even with secondary generalization.Clinical Relevance- The computational study establishes focal cooling of the brain region with partial epilepsy not only suppresses epileptic discharges but can also prevent its generalization to other brain regions.Surgical removal of the seizure onset zone (SOZ) in epilepsy patients is a potentially curative treatment, but the process heavily relies on accurate localization of the SOZ via visual inspection. SPES (Single-pulse electrical stimulation) is a method recently used to explore inter-areal connectivity in vivo to probe functional brain networks such as language and motor networks, and to a much lesser degree, seizure networks. We hypothesized that a dynamical quantification of the connectivity networks derived from the evoked responses induced by SPES could also be used to localize the SOZ. To test our hypothesis, we used an intracranial EEG (iEEG) data set in which five epilepsy patients underwent extensive SPES evaluation. For each patient, and for each dataset that stimulated a different pair of electrodes, we constructed a state-space model from the patient's data. Specifically, we simultaneously estimated model parameters under an exogenous pulse input to a dynamical system whose state vector consisted of the response iEEG signals. Then, the size of the reachable state space, as quantified by the maximum singular value of the reachability matrix, σmax(R), was computed and denoted as the "largest" network response possible when stimulating the given pair. Our results suggest high agreement between σmax(R) and clinically annotated SOZ for patients with localizable SOZs.Clinical Relevance- Our study applies dynamical systems theory to identify epileptogenic brain regions, creating a novel tool that clinicians may use in surgical planning for medically-refractory epilepsy patients.Surgical resection of the seizure onset zone (SOZ) could potentially lead to seizure-freedom in medically refractory epilepsy patients. However, localizing the SOZ can be a time consuming and tedious process involving visual inspection of intracranial electroencephalographic (iEEG) recordings captured during passive patient monitoring. Single pulse electrical stimulation (SPES) is currently performed on patients undergoing invasive EEG monitoring for the main purposes of mapping functional brain networks such as language and motor networks. We hypothesize that evoked responses from SPES can also be used to localize the SOZ as they may express the natural frequencies and connectivity of the iEEG network. To test our hypothesis, we construct patient specific single-input multi-output transfer function models from the evoked responses recorded from five epilepsy patients that underwent SPES evaluation and iEEG monitoring. Our preliminary results suggest that the stimulation electrodes that produced the highest gain transfer functions, as measured by the $mathcalH_infty $ norm, correspond to those electrodes clinically defined in the SOZ in successfully treated patients.Clinical Relevance- This study creates an innovative tool that allows clinicians to identify the seizure onset zone in medically refractory epilepsy patients using quantitative metrics thereby increasing surgical success outcomes, mitigating patient risks, and decreasing costs.Non-contact galvanotaxis as a way to drive the cells migration could be a promising tool for a variety of biomedical applications, such as wound healing control, avoiding the interaction between electrodes and cell cultures. To this regard, the efficacy of this electrical stimulus application has to be deeper studied to control physiological migratory phenomena in a remote way.Aim of this work is to provide an experimental investigation on the mobility of cells exposed to a static electric field in a "noncontact" mode, supported by a suitable modeling of the electric field distribution inside the experimental setup. In particular, scratch assays have been carried out placing the electrodes outside the cells medium support and changing the cells holder to study more than one configuration.Clinical Relevance- In this study the in vitro experiments on the non-contact galvanotaxis, together with the numerical simulations of the exposure setup, provide a way to investigate the effects that could affect an electrically drive cell migration.RF heating has severely limited the application of high-field magnetic resonance imaging (MRI) in the patients with active implantable medical devices (AIMDs). Based on the finite element methods (FEMs), we study the RF heating of a lead implanted in the human body under 3.0 T MRI. The coupled simulation of electromagnetic and heat transfer is used to analyze the relationship between several factors, such as the resonance length, the implantation position, the implantation configuration, and the thermal conductivity, and RF heating. Results show that the resonance length of the lead is half of the RF wavelength, and the temperature rise exceeds the acceptable range of human body when the resonance occurs. The electromagnetic field distribution in the phantom is not uniform, so the field density around the wire may vary with different implantation positions and configurations. Temperature rise reduces with the decrease of the field density. In addition, RF heating can be reduced by increasing the thermal conductivity.
My Website: https://www.selleckchem.com/products/cm-4620.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.