Notes
![]() ![]() Notes - notes.io |
To compare and discuss the gender disparities in the Orthopaedic specialty.
We reviewed the literature to find the rates of women applying for an orthopaedic residency, fellowship, and academic career program, to understand the causes of the disparities in women in orthopaedics, and how this relates to orthopaedic surgical practice.
The idea that men and women are different and have different working styles and skills and the belief that males are more dominant and more status-worthy than females leads to gender barriers and stereotypes that restrict women from entering male-dominated specialties. It is important to mention that equivalent barriers restrict men from pursuing female-dominated specialties such as Gynecology. Economic disparities and gender stereotypes that divide medical specialties into masculine and feminine, creating a gender gap in health care are major concerns. However, the number of women in the health sector is expected to increase due to the growing amount of female students that disparities even more evident.Traditionally in total knee arthroplasty (TKA), a post-operative neutral alignment was the gold standard. This principle has been contested as functional outcomes were found to be inconsistent. Analysis of limb alignment in the non-osteoarthritic population reveals variations from neutral alignment and consideration of a personalized or patient-specific alignment in TKA is challenging previous concepts. The aim of this review was to clarify the variations of current personalized alignments and to report their results. Current personalized approaches of alignment reported are kinematic, inverse kinematic, restricted kinematic, and functional. The principle of "kinematic alignment" is knee resurfacing with restitution of pre-arthritic anatomy. The aim is to resurface the femur maintaining the native femoral joint line obliquity. The flexion and extension gaps are balanced with the tibial resection. The principle of the "inverse kinematic alignment" is to resurface the tibia with similar medial and lateral bone resections in order to keep the native tibial joint line obliquity. Gap balancing is performed by adjusting the femoral resections. To avoid reproducing extreme anatomical alignments there is "restricted kinematic alignment" which is a compromise between mechanical alignment and true kinematic alignment with a defined safe zone of alignment. Finally, there is the concept of "functional alignment" which is an evolution of kinematic alignment as enabling technology has progressed. This is obtained by manipulating alignment, bone resections, soft tissue releases, and/or implant positioning with a robotic-assisted system to optimize TKA function for a patient's specific alignment, bone morphology, and soft tissue envelope. The aim of personalizing alignment is to restore native knee kinematics and improve functional outcomes after TKA. A long-term follow-up remains crucial to assess both outcomes and implant survivorship of these current concepts.
Surgical treatment of distal humerus fractures can lead to numerous complications. Data suggest that the number of screws in the distal (articular) segment may be associated with complication rate. The purpose of this study is to evaluate the association between a number of screws in the distal segment and complication rate for surgical treatment of distal humerus fractures. We hypothesize that the number of screws in the articular segment of distal humerus AO/OTA C-type fractures treated with open reduction internal fixation (ORIF) will be inversely proportional to the complication rate.
We performed a single-center retrospective cohort study of 27 patients who underwent ORIF of distal humerus fractures C-type with at least six months of radiographic and clinical follow-up. Clinical outcomes including a range of motion, pain, revision surgery for stiffness and/or heterotopic ossification (HO), nonunion, and persistent ulnar nerve symptoms requiring revision neurolysis were recorded.
In C-type fracturesand surgical approach did not correlate with outcomes. Men had higher rates of complications and required more frequent revision surgery compared to women.Molecular biology has been gaining more importance in parasitology. Recently, a commercial multiplex PCR assay detecting helminths was marketed the Allplex™ GI-Helminth(I) Assay. It targets Ancylostoma spp., Ascaris spp., Enterobius vermicularis, Hymenolepis spp., Necator americanus, Strongyloides spp., Taenia spp. and Trichuris trichiura, but also the two most common microsporidia genera in human health, i.e. Enterocytozoon spp. and Encephalitozoon spp. This study aimed to evaluate and compare the Allplex™ GI-Helminth(I) Assay to classical diagnostic methods, based on a cohort of 110 stool samples positive for helminths (microscopy) or for microsporidia (PCR). Samples were stored at -80 °C until analysis by the Allplex™ GI-Helminth(I) Assay. False-negatives were re-tested with bead-beating pretreatment. Without mechanical lysis, concordance and agreement between microscopy and Allplex™ GI-Helminth(I) Assay ranged from 91% to 100% and from 0.15 to 1.00, respectively depending on the target. Concordance was perfect for Taenia spp. (n = 5) and microsporidia (n = 10). False-negative results were observed in 54% (6/13), 34% (4/11) and 20% (7/35) of cases, for hookworms, E. vermicularis and Strongyloides spp. detection, respectively. For these targets, pretreatment improved the results, but only slightly. Trichuris trichiura detection was critically low without pretreatment, as only 9% (1/11) of the samples were positive, but detection reached 91% (10/11) with bead-beating pretreatment. Mechanical lysis was also needed for Ascaris spp. and Hymenolepis spp. read more to reduce false-negative results from 1/8 to 1/21, respectively, to none for both. Overall, with an optimized extraction process, the Allplex™ GI-Helminth(I) Assay allows the detection of numerous parasites with roughly equivalent performance to that of microscopy, except for hookworms.The sporulation of oocysts of Eimeria that infect poultry is known to be under the influence of environmental conditions, including temperature, oxygen supply, and moisture. However, even when these conditions are optimal, the level of sporulation can remain low. The effect of oocyst maturity on their ability to sporulate was investigated for two species of Eimeria E. acervulina of chickens, and E. meleagrimitis of turkeys. After oral infection of birds, oocysts were collected at their production site in the intestine at different times around the prepatent period. The percentage of sporulation was determined by observation of 100 oocysts for each sample. With E. acervulina, it was observed that sporulation depended on the time of collection of the oocysts in the intestine, and that it increased with aging oocysts (from 5% to 40% globally in 8 h). With E. meleagrimitis, sporulation remained low with oocysts collected in the duodenum (below 20%), but oocysts collected in the midgut and in the lower intestine sporulated more efficiently (around 80%) than oocysts collected in the duodenum at the same time.
Website: https://www.selleckchem.com/products/brivudine.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team