Notes
![]() ![]() Notes - notes.io |
Sensitivity analysis of the PV-grid system was also conducted using Net Present Value (NPV) and the payback time indicators to determine the impacts of Feed-in Tariff (FiT) rates, financial incentives, electricity tariff, and inflation rate on the economic viability of the PV grid system. Results show that the PV-grid system has a promising potential under reasonable set of varying system parameters. ABR-238901 cost On top of its social and environmental-friendly advantages, the PV-battery system is found to be more economical when adopted as a standalone NWA solution as compared to the diesel generator option, even at the lowest diesel price. The PV-grid system does not only provide a short-term remedy to the rolling blackouts in Libya but also enhances system operational reliability by providing a NWA to rundown or shattered grid infrastructure, thus bolstering energy provision in residential neighborhoods.With the outbreak of COVID-19 (Corona Virus Disease, 2019), China adopted traffic restrictions to reduce the spread of COVID-19. Using daily data before and after the outbreak of COVID-19, an exogenous shock, this paper analyzes the effects of private vehicle restriction policies on air pollution. We find that the private vehicle restriction policies reduce the degree of air pollution to a certain extent. However, their effect varies with other policies implemented in the same period and the economic development of the city itself. Through the analysis of different categories of restrictions, we find that restriction policy for local fuel vehicles and the restriction policy based on the last digit of license plate numbers have the best effect in reducing air pollution. Under the background of COVID-19 epidemic and the implementation of private vehicle restriction policies and other traffic control policies during this period, we have also obtained other enlightenment on air pollution control.Hazardous waste management is of paramount importance due to the potential threats posed to the environment and local residents. The design of a hazardous waste management system involves several important decisions, i.e., the determination of the locations and sizes of treatment, recycling and disposal facilities, and organizing the transportation of hazardous waste among different facilities. In this paper, we proposed a novel stochastic bi-objective mixed integer linear program (MILP) to support these decisions in order to reduce the population exposure to risk while simultaneously maintaining a high cost efficiency of the transportation and treatment of hazardous waste. Moreover, considering the inherent uncertainty within the planning horizon, the cost, demand and affected population are defined as stochastic parameters. A sample average approximation based goal programming (SAA-GP) approach is used to solve the mathematical model. The proposed model and solution method are validated through numerical experiments whose results show that uncertainty may not only affect the objective value but also lead to different strategic decisions in the network design of a hazardous waste management system. In this regard, the strategic decisions obtained by the stochastic model is more robust to the change of external environment. Finally, the model is applied in a real-world case study of healthcare waste management in Wuhan, China, in order to show its applicability.The integration of urban green spaces into modern city planning is seen as a promising tool to offset the drawbacks of ever-expanding cities. Urban agriculture is a common method to implement such strategies and to increase urban sustainability with a special focus on food security. Due to their location, urban farms are highly influenced by past and present anthropogenic activities which can threaten both soil health and food safety. This study includes 12 urban agriculture sites in the metropolitan area of Adelaide, Australia. It is the first of its kind to focus on soil health in urban agriculture systems with a further emphasis on mycorrhizal fungi. Descriptive information about each site, the biodiversity of the selected plots and soil samples from different depths and locations were collected and analysed for chemical and biological parameters. Seven metals, total and plant-available (Colwell) phosphorus and available nitrogen were measured in soils. A glasshouse bioassay was also conducted to determine and integrated via composting. Various urban waste streams could be used to counter-act imbalanced soil nutrients. Arbuscular mycorrhizal fungi were present in all sites, indicating that the practiced soil management is sustainable from a microbial perspective. Given their important role in supporting plant nutrition, and potential to reduce the need for external nutrient inputs, they provide an important focal point for achieving clean and sustainable urban food production. The results were incorporated into a framework for the management of urban soil health.This paper performs an emergy analysis (EmA) to compare two real power plants include a conventional natural gas steam power plant (NGPP) with one that burns municipal solid waste (MSWPP). For this purpose, the EmA is used to investigate the sustainability, renewability, environmental impacts, and economic issues. The capacity of the NGPP and MSWPP are 247.5 and 3 MW, respectively. Results from this study show that the percent of renewability (PR) and emergy sustainability index (ESI) of the MSWPP are much more than those of the NGPP. The PR and ESI of the MSWPP are 46.81 and 1.65, while for the NGPP are 5.01 and 0.05, respectively. It is proved that the MSWPP is more efficient and has the better environmental impacts compared to the NGPP. Moreover, a hypothetical MSWPP with the same electricity output of the NGPP is studied using the EmA. A more efficient system with the higher PR and ESI is observed compared to the other case studies. Beside of these advantages, use of the MSW has other benefits such as reducing the greenhouse gases released in the atmosphere, saving fossil fuels, low land area required compared to the landfill, speed and ease of disposal, and production of clean and useful ash.
Here's my website: https://www.selleckchem.com/products/abr-238901.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team