Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
These findings indicate that PGR5/PGRL1-dependent CEF protects PSII and PSI from photooxidative damage through the formation of ΔpH while maintaining thylakoid membrane integrity and normal gene expression levels of core photosystem components. This study demonstrates that PGR5/PGRL1-dependent CEF plays a major role in HT response in tomato. The plasma membrane (PM)-localized receptor-like kinases (RLKs) play important roles in pathogen defense. One of the first cloned RLKs is the Arabidopsis receptor kinase FLAGELLIN SENSING 2 (FLS2), which specifically recognizes a conserved 22 amino acid N-terminal sequence of Pseudomonas syringae pv.tomato DC3000 (Pst) flagellin protein (flg22). Although extensively studied in Arabidopsis, the functions of RLKs in crop plants remain largely uninvestigated. To understand the roles of RLKs in soybean (Glycine max), GmFLS2 was silenced via virus induced gene silencing (VIGS) mediated by Bean pod mottle virus (BPMV). No significant morphological differences were observed between GmFLS2-silenced plants and the vector control plants. However, silencing GmFLS2 significantly enhanced the susceptibility of the soybean plants to Pseudomonas syringae pv.glycinea (Psg). Kinase activity assay showed that silencing GmFLS2 significantly reduced the phosphorylation level of GmMPK6 in response to flg22 treatment. However, reduced phosphorylation level of both GmMPK3 and GmMPK6 in response to Psg infection was observed in GmFLS2-silenced plants, implying that defense response is likely transduced through activation of the downstream GmMAPK signaling pathway upon recognition of bacterial pathogen by GmFLS2. The core peptides of flg22 from Pst and Psg were highly conserved and only 4 amino acid differences were seen at their N-termini. Interestingly, it appeared that the Psg-flg22 was more effective in activating soybean MAPKs than activating Arabidopsis MAPKs, and conversely, Pst-flg22 was more effective in activating Arabidopsis MAPKs than activating soybean MAPKs, suggesting that the cognate recognition is more potent than heterologous recognition in activating downstream signaling. Taken together, our results suggest that the function of FLS2 is conserved in immunity against bacteria pathogens across different plant species. V.Root-derived abscisic acid (ABA) is known to regulate shoot physiology, such as stomata closure. Conversely, the basipetal regulatory effect of shoot-derived ABA is poorly understood. Herein, we report that simulation of shoot-ABA accumulation by exogenous application of ABA to shoots basipetally stimulates primary root (PR) growth. ABA applied to shoots accelerates root cell division, as evidenced by the increase in meristem size and cell number and the intensity of CYCB1;1GFP (a mitosis marker). Root ABA content was not changed following shoot ABA application, although the ABA reporter line RAB18GFP showed an increase in ABA in the cotyledons. Shoot-ABA application increases basipetal auxin transport by 114 %. Shoot-ABA-promoted PR growth can be abolished by attenuating basipetal auxin flux using 2,3,5-triiodobenzoic acid (TIBA, an auxin transport inhibitor), demonstrating that ABA promotes PR growth by increasing basipetal auxin transport. Root cell elongation, evaluated by the total length of the first 7 cells in the elongation zone (EZ), was increased by 56 % following shoot-ABA application. The cell walls of the root EZ were alkalinized by ABA, as exhibited by 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt staining. Higher pH promotes both PR growth and cell elongation. Thus, shoot-ABA promotes cell elongation by alkalinizing the cell wall. In light of our results, we provide a representative detailed model of the basipetal regulatory effect of ABA on PR growth. Salicylic acid (SA) plays an important role in the response of plants to abiotic stresses. Starvation stress affects plant cell metabolic activities, which further limits the normal growth and development of plants. It was reported that SA might play a regulatory role in the process of plant against starvation stress, but the mechanism involved in this process is still unclear. Thus, in this study, the transgenic plants overexpressing a SA binding protein 2 (SABP2) gene were exposed to starvation stress and the transgenic lines showed starvation-tolerant phenotype. Compared with wild-type (WT) plants, transgenic plants showed better growth status under poor-nutrition stress. Transgenic plants also showed more vigorous roots than WT plants. Physiological tests indicated that the transgenic plants showed higher relative water content (RWC), chlorophyll content, photosynthetic capacity, endogenous SA content, and lower ROS level compared to WT plants. Transcriptome analysis of tobacco plants identified 3, 748 differentially expressed genes (DEGs) between transgenic and WT plants under starvation stress. These DEGs are mainly involved in glycolysis/gluconeogenesis pathway group, MAPK signaling pathway group and plant hormone signal transduction pathway group. As determined by qPCR, up-regulated expression of fifteen genes such as abscisic acid receptor PYR1-like gene (NtPYR1-like), bidirectional sugar transporter N3-like gene (NtSWEETN3-like) and superoxide dismutase [Fe] chloroplastic-like gene (NtFeSOD-like), etc., was observed in transgenic plants under poor-nutrition stress which was in accordance with RNA-sequencing results. The modified pathways involved in plant hormone signaling are thought to be at least one of the main causes of the increased starvation tolerance of transgenic tobacco plants with altered SA homeostasis. Symbiotic nitrogen fixation (SNF) has a high energetic cost for legume plants; legumes thus reduce SNF when soil N is available. The present study aimed to increase our understanding regarding the impacts of the two principal forms of available N in soils (ammonium and nitrate) on SNF. We continuously measured the SNF of Medicago truncatula under controlled conditions. This permitted nodule sampling for comparative transcriptome profiling at points connected to the nodules' reaction following ammonium or nitrate applications. The N component of both ions systemically induced a rhythmic pattern of SNF, while the activity in control plants remained constant. This rhythmic activity reduced the per-day SNF. https://www.selleckchem.com/Androgen-Receptor.html The nitrate ion had additional local effects; the more pronounced were a strong downregulation of leghaemoglobin, nodule cysteine-rich (NCR) peptides and nodule-enhanced nicotianamine synthase (neNAS). The neNAS has proven to be of importance for nodule functioning. Although other physiological impacts of nitrate on nodules were observed (e.
Website: https://www.selleckchem.com/Androgen-Receptor.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team