NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Exact Identification regarding Bioactive Meliaceae Limonoids by UHPLC-MS/MS Based Structure-Fragment Connections (SFRs).
Mitochondrial targeting drug delivery systems have made unprecedented progress in tumor treatment. Nevertheless, the stability of systemic circulation and the effectiveness of tumor accumulation are the basis for achieving tumor subcellular targeting. This study aims to overcome the biological barrier while improving the mitochondria-targeted effect of nanoparticles based on natural polysaccharides. Novel polysaccharide-based nanoparticles, with tumor microenvironment-responsive charge-reversal and mitochondrial targeting abilities, were prepared in our study. buy 3-MA Curcumin (Cur) was loaded into the core of a positively charged chitosan oligosaccharide (COS) derivative with mitochondrial targeting ability, and a negatively charged shell based on angelica sinensis polysaccharide (AS) derivative was wrapped in the surface of the core. At the same time, the pH-sensitive borate ester bond was formed between the shell and the core. In vitro experiments showed that mitochondrial-targeted core-shell nanoparticles achieved charge-reversal and release more Cur in the acidic tumor microenvironment. After entering into the tumor cells, the lysosomes escape was effectively realized, and more Cur was transmitted to the mitochondria. This process led to the enhancement of the cytotoxicity, the reduction of the mitochondrial membrane potential and the activation of the apoptotic pathway. The results of in vivo experiments showed that the core-shell nanoparticles efficiently delivered the drug to the tumor site and significantly prolonged the retention time of the drug in the tumor tissue. At the same time, it had excellent antitumor activity and in vivo safety for tumor-bearing nude mice. Natural active compounds with antioxidant properties and other potential health benefits, like quercetin (Qu), have aroused wide concern for developing bio-functional products. However, their applications are hindered by their intrinsic poor water solubility and chemical instability. In this paper, a natural antioxidant alpha lipoic acid (ALA) was grafted onto chitosan (CS) to synthesize a novel graft polymer (CS-graft-ALA). In particular, this graft-polymer could self-assemble into spherical nanomicelles in water, with a low critical micelle concentration (CMC) of 0.0076 mg/mL. As a robust and active nanocarrier, the CS-graft-ALA micelles showed high efficiency in encapsulating Qu and dispersing Qu in water. As found, the antioxidant activity of Qu was effectively enhanced when entrapped within CS-graft-ALA micelles. Moreover, CS-graft-ALA micelles could significantly improve the photo-stability and temperature-stability of Qu. The Qu/CS-graft-ALA micelles with excellent water dispersability, stability and improved antioxidant activity hold a great potential for wide applications. Radioactive iodine waste from nuclear plant became the severe environmental problem and led to the public health concern. The cross-linked chitosan adsorbed iodide anions through the electrical attraction, yet performing limited-efficiently. Targeting as the better adsorption, the modified chitosan sorbent as AgCl@CM (silver chloride entrapped in the cross-linked chitosan microspheres) for iodine adsorption was proposed and implemented by chemisorption from AgCl and physisorption from chitosan via the improved emulsion method (emulsions mixing-collision and polymerization). With the broad application from pH 2 to pH 10, the spherical AgCl@CM (from 0.20 g silver nitrate) performed the I127 anions (instead of radioactive iodine) adsorption efficiency of higher than 90 % in 20 min, with the maximum adsorption capacity of 1.5267 mmol/g, well-fitting with the pseudo-first-order model and Sips isothermal model. AgCl@CM also performed I127 adsorption with the significant selectivity relative to Cl-. The micro-spherical AgCl@CM sorbents were therefore prospective-effectively for iodine waste water treatment. We developed a co-delivery system of nitric oxide (NO) and antibiotic for the antibiotic-resistant bacterial infection therapy. The NO could disperse the bacterial biofilms and convert the bacteria into an antibiotic-susceptible planktonic form. Using the chitosan-graft-poly(amidoamine) dendrimer (CS-PAMAM) as the co-delivery system, methicillin (MET) and NO were conjugated successively to form CS-PAMAM-MET/NONOate. The positive CS-PAMAM could efficiently capture the negatively charged bacteria and PAMAM provide abundant reaction points for high payloads of NO and MET. The CS-PAMAM-MET/NONOate displayed effective and combined antibacterial activity to the E. coli and S. aureus. Particularly, for the MET-resistant S. aureus (MRSA), the CS-PAMAM-MET/NONOate displayed the synergistic antibacterial activity. In vivo wound healing assays also confirmed that CS-PAMAM-MET/NONOate could heal the infection formed by MRSA and then accelerate the wound healing effectively. Moreover, CS-PAMAM-MET/NONOate showed no toxicity towards 3T3 cells in vitro and rats in vivo, providing a readily but high-efficient strategy to drug-resistant bacterial infection therapy. Inorganic matter modifications were used to improve the hydrophobic properties and slow-release effects of water-based copolymer films. Water-based copolymers were prepared by aqueous polymerization of polyvinyl alcohol, starch, chitosan, and sodium carboxymethyl cellulose, and then, zeolite powder, volcanic ash or biochar were added to prepare the inorganic matter modified water-based copolymer films. The results showed that the inorganic matter modified water-based copolymer films had enhanced thermal stability, reductions in O-H and water vapour permeability, and increased crystallinity and roughness. Compared with water-based copolymer films, the water absorption capacities of the zeolite powder modified water-based copolymer films, volcanic ash modified water-based copolymer films, and biochar modified water-based copolymer films were reduced by 42.8 %, 50.0 % and 39.0 %, and their ammonium permeability was reduced by 53.0 %, 12.1 % and 1.1 %, respectively. Inorganic matter modified water-based copolymer films have properties that make them suitable for use in preparing slow-release coating materials.
Read More: https://www.selleckchem.com/products/3-methyladenine.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.