Notes
Notes - notes.io |
Removal of individual bacterial species varied from 91 % to 98 % for Escherichia coli (91.62 %), Streptococcus spp. (98.18 %), Staphylococcus spp.(95.33 %) and Pseudomonas spp. (92.50 %). In conclusion, the use of SLC with Canicoll has the potential to decrease bacterial load in chilled dog semen.Oxidative stress occurs when there is greater than optimal production of reactive oxygen species (ROS) or an antioxidant system failure. Calves produced using in vitro fertilization (IVF) or cloning (CA) have greater mortality rates, with greater incidence of respiratory diseases, which could be explained by the deleterious outcomes from oxidative stress. buy SBE-β-CD Calves were studied that were produced using artificial insemination (AI; n = 20), in vitro fertilization (IVF; n = 15) or cloning (CA; n = 15). Blood samples were collected at 6, 12, 24 and 48 h subsequent to the time of birth. The cloned calves had greater ROS production from lipid peroxidation, with greater thiobarbituric acid reactive substances. This factor was associated with a lesser amount of superoxide dismutase in the CA. Calves produced using IVF had a greater activity of catalase and glutathione peroxidase, either due to greater production of hydrogen peroxide or greater efficiency of enzymatic response of these neonates. Calves produced using AI had greater concentrations of reduced thiol groups. These associated factors may indicate there is greater oxidative stress in calves produced by IVF and cloning than with use of AI, however in these calves there was an effective response to these oxidative stressors within 48 h subsequent to birth. Hence, calves produced using IVF and by cloning have greater ROS production when compared to calves produced using AI. The calves produced using IVF, however, had a greater enzymatic activity or were more efficient in adapting to ROS when compared to calves produced by cloning.Dairy cows frequently undergo a state of negative energy balance (NEB) after parturition and some have impaired ovarian functions that result in delayed resumption of estrous cyclicity and development of follicles without ovulation occurring. During the postpartum period, cows undergo body-fat store losses, hormonal changes, fat mobilization and increases in nonesterified fatty acid (NEFAs) concentrations in blood and follicular fluid. The effect of NEFAs on follicular development and function of follicular cells, however, is not fully understood. The aim of this study, therefore, was to study the effect of an intrafollicular injection of a mixture of oleic, stearic and palmitic NEFAs on dominant follicle development and function of granulosa cells in cows that were not in a NEB state. Follicular size was less at 24 and 48 h after administration of NEFAs compared to that of control follicles injected with vehicle only. At 24 h after intrafollicular injection, the relative mRNA transcript abundance for proteins involved in steroidogenesis (CYP19A1, 3BHSD, STAR, FSHR), metabolism (GLUT1, GLUT3, INSR, IRS1, IRS2, SLC27A1, PPARG), and cell proliferation and apoptosis (CCND2; XIAP) in granulosa cells, as well as estradiol concentrations in follicular fluid were similar in control and NEFA-treated follicles. In conclusion, the results of this study indicate increased intrafollicular concentrations of NEFAs in cows that are not in a NEB state has a detrimental effect on follicle development. We propose intrafollicular injection is a useful approach to further investigate the local effects of NEFAs on the function of follicular cells.Two experiments were conducted to evaluate if an additional prostaglandin F2α (PG) injection during an estradiol-based estrous synchronization treatment regimen affects pregnancy rates resulting from fixed-time artificial insemination (FTAI) in Nelore cows. In Experiment 1, 1039 cows were administered estradiol benzoate and an intravaginal progesterone releasing device (CIDR) on d -11, an injection of PG on d -4, with CIDR removal and administration of estradiol cypionate and eCG occurring on d -2, and FTAI on d 0. Cows were administered an additional injection of PG (PG2) or saline (PG1) on d -2. Percentage pregnancy per FTAI on d 30 was greater (P = 0.01) in cows of the PG2 than PG1 group (54.5 % and 46.6 %, respectively). In Experiment 2, there was use of the same treatment regimen for estrous synchronization of 934 cows as that for Experiment 1 followed by FTAI, with there being diagnosis of whether cows had or did not have a corpus luteum on d -4. Response to estrous synchronization, largest follicle diameter at FTAI, and pregnancy per FTAI were greater (P ≤ 0.05) in cows of the PG2 than PG1 group with a body condition score (BCS) less then 5.0 at FTAI (81.2 % and 72.6 %, 11.9 and 11.2 mm, 55.5 and 45.6 %; respectively). These treatment responses did not differ (P ≥ 0.18) in cows with BCS ≥ 5.0. Collectively, results indicate that treatment with PG2 increased pregnancy per FTAI in B. indicus cows deficient in body energy reserves, by enhancing follicle development and estrous synchronization response.There are age-related changes in testicular anatomy and physiology whereby there are modifications of sperm production and reproductive hormone functions. Effects of age on testicular microanatomy are well documented in humans, while there is limited understanding of these changes in dogs. The aim of this study was to evaluate age-related changes of seminiferous tubule morphology, interstitial fibrosis and spermatogenesis in dogs. Dogs (n = 32) were divided into four age groups peripubertal (n = eight), relatively younger (n = seven), reproductively mature (n = seven) and relatively older (n = ten). Picrosirius Red stained sections were used for morphometrical analysis of testicular tissues, while the characteristics of seminiferous epithelium were assessed using a modified Johnsen scoring system for haematoxylin and eosin stained sections. Seminiferous epithelium and seminiferous tubule area increased from peripuberty to reproductive maturity, indicating there were changes during sexual maturation and subsequently there were decreases with further aging. There was a similar age-related trend for changes in seminiferous epithelium height with values being greatest in reproductively mature dogs; while there were no age-related differences in tubular diameter. Collagen content in the testicular interstitium gradually decreased from peripuberty to the age when dogs were reproductively mature and there were subsequent increases in relatively older dogs, thus, there was an association between the extent of testicular fibrosis and senescence. There was a decrease in spermatogenetic functions from relatively younger to older ages. Further investigations are warranted to establish mechanisms responsible for age-related changes of testicular morphology and related clinical implications.
Website: https://www.selleckchem.com/products/sbe-b-cd.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team