Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
In the prediction of depressive symptoms, compared with the other models, STMGP showed the highest prediction accuracy with the lowest degree of overfitting, although there was no significant difference in prediction accuracy. Simulation studies suggested that STMGP has a better prediction accuracy for moderately polygenic phenotypes. Our investigations suggest the potential usefulness of STMGP for predicting polygenic psychiatric conditions while avoiding overfitting.Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and the therapeutic outcomes remain undesirable. Increasing evidence shows that aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2) plays crucial roles in tumorigenesis of multiple tumors. However, the expression status and functions of ARNTL2 in PDAC remain elusive. Here we showed that ARNTL2 expression was markedly upregulated in PDAC tissues and cell lines. elevated expression of ARNTL2 was positively related to unfavorable prognosis. Knockdown of ARNTL2 could suppress motility and invasive ability of PDAC cells in vitro, as well as tumor development in vivo. In addition, microRNA-26a-5p (miR-26a-5p) was identified as the crucial specific arbitrator for ARNTL2 expression and the expression of miR-26a-5p was inversely correlated with ARNTL2 expression in PDAC tissues. Functionally, elevated expression of miR-26a-5p was found to inhibit the proliferation, migration, and invasion of PDAC cells in vitro, while ARNTL2 increased expression could partially abolish the suppressive effect of miR-26a-5p. Mechanism study indicated that elevated expression of miR-26a-5p suppressed TGF/BETA signaling pathway by targeting ARNTL2 in PDAC cells. In conclusion, our data suggested that ARNTL2 acted as an oncogene to regulate PDAC growth. MiR-26a-5p/ARNTL2 axis may be a novel therapeutic candidate target in PDAC treatment.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Exosomes (Exo) secreted from mesenchymal stem cells (hMSCs) are protective against myocardial injury. The purpose of the study was to investigate the role and mechanisms by which exosomes promote cardiomyocyte survival and function following myocardial infarction (MI). hMSCs were cultured under hypoxic and normoxic conditions. Hypoxia-conditioned hMSC-derived exosomes (Hypo-Exo) and normoxic-conditioned hMSC-derived exosomes (Nor-Exo) were collected and intramyocardially injected into rats with MI. FICZ The therapeutic effects of Hypo-Exo and Nor-Exo were evaluated after 4 weeks. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of candidate long noncoding RNA urothelial carcinoma associated 1 (lncRNA-UCA1) in Nor-Exo and Hypo-Exo. Intramyocardial injection of lncRNA-UCA1-knockdown-Hypo-Exo in a rat model of MI was then performed and the cardiac function was characterized. The target and downstream of the molecular mechanism lncRNA-UCA1 was disclosed by luciferase reporter assays and western blot. Circulating exosomal lncRNA-UCA1 level in AMI patients and healthy volunteers was assessed. We found that (1) hMSC exosomal (from hypoxic and normoxic conditions) cardioprotection in vitro and in vivo correlated with the presence of encapsulated lncRNA-UCA1 in exosomes; (2) lncRNA-UCA1 targeted miR-873 via sponging, reducing the latter's suppressive effects on its target XIAP, and this translated into AMPK phosphorylation and increased level of the antiapoptotic protein BCL2; and (3) plasma derived from patients with AMI contained exosomes enriched with the lncRNA-UCA1, unlike that from normal subjects. This study demonstrates that Hypo-Exo lncRNA-UCA1 plays a cardioprotective role via the miR-873-5p/XIAP axis and circulating exosomal lncRNA-UCA1 may be a promising novel biomarker for the diagnosis of AMI.The prognosis for cervical cancer (CCa) patients with lymph node metastasis (LNM) is dismal. Elucidation of the molecular mechanisms underlying LNM may provide clinical therapeutic strategies for CCa patients with LNM. However, the precise mechanism of LNM in CCa remains unclear. Herein, we demonstrated that protein tyrosine phosphatase receptor type M (PTPRM), identified from TCGA dataset, was markedly upregulated in CCa with LNM and correlated with LNM. Moreover, PTPRM was an independent prognostic factor of CCa patients in multivariate Cox's proportional hazards model analysis and associated with poor prognosis. Furthermore, through gain-of-function and loss-of-function approaches, we found that PTPRM promoted CCa cells proliferation, migration, invasion, lymphangiogenesis, and LNM. Mechanistically, PTPRM promoted epithelial-mesenchymal transition (EMT) via Src-AKT signaling pathway and induced lymphangiogenesis in a VEGF-C dependent manner, resulting in LNM of CCa. Importantly, knockdown of PTPRM dramatically reduced LNM in vivo, suggesting that PTPRM plays an important role in the LNM of CCa. Taken together, our findings uncover a novel molecular mechanism in the LNM of CCa and identify PTPRM as a novel prognostic factor and potential therapeutic target for LNM in CCa.Certain miRNAs can attenuate hypoxia/re-oxygenation-induced autophagic cell death reported in our previous studies, but how these miRNAs regulate the autophagy-related cellular signaling pathway in preventing cell death is largely unknown. In the current study, the autophagy-related miRNAs of hsa-miR-20b were investigated in an in vitro model of hypoxia/re-oxygenation-induced endothelial autophagic cell death. Of these, miR-20b was found to be the most important miRNA which targeted on the key autophagy kinase ULK1 and inhibited hypoxia/re-oxygenation injury-induced autophagy by decreasing both autophagosomes and LC3I to II transition rate and P62 degradation. These processes were reversed by the transfection of an miR-20b inhibitor. Re-expression of ULK1 restores miR-20b-inhibited autophagy. Propofol, a commonly used anesthetic, promoted miR-20b and METTL3 expression and attenuated endothelial autophagic cell death. The inhibited endogenous expression of miR-20b or silenced METTL3 diminished the protective effect of propofol and accentuated autophagy.
Homepage: https://www.selleckchem.com/products/ficz.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team