Notes
![]() ![]() Notes - notes.io |
n strategies to optimize maternal and child health.Here we report the molecular networks associated with the mucosal and systemic responses to peracetic acid (PAA), a candidate oxidative chemotherapeutic in Atlantic salmon (Salmo salar). Smolts were exposed to different therapeutic doses (0, 0.6 and 2.4 mg/L) of PAA for 5 min, followed by a re-exposure to the same concentrations for 30 min 2 weeks later. PAA-exposed groups have higher external welfare score alterations, especially 2 weeks after the re-exposure. Cases of fin damage and scale loss were prevalent in the PAA-exposed groups. Transcriptomic profiling of mucosal tissues revealed that the skin had 12.5 % more differentially regulated genes (DEGs) than the gills following PAA exposure. The largest cluster of DEGs, both in the skin and gills, were involved in tissue extracellular matrix and metabolism. There were 22 DEGs common to both mucosal tissues, which were represented primarily by genes involved in the biophysical integrity of the mucosal barrier, including cadherin, collagen I α 2 chain, mucin-2 and spondin 1a. The absence of significant clustering in the plasma metabolomes amongst the three treatment groups indicates that PAA treatment did not induce any global metabolomic disturbances. Nonetheless, five metabolites with known functions during oxidative stress were remarkably affected by PAA treatments such as citrulline, histidine, tryptophan, methionine and trans-4-hydroxyproline. Collectively, these results indicate that salmon were able to mount mucosal and systemic adaptive responses to therapeutic doses of PAA and that the molecules identified are potential markers for assessing the health and welfare consequences of oxidant exposure.Low-cost, high-activity, non-precious metal electrocatalysts are needed to enhance the bifunctional oxygen activities of rechargeable Zn-Air batteries. In this study, a Fe-enriched FeNi3 inter-metallic nanoparticle/nitrogen-doped carbon (Fe-enriched-FeNi3/NC) electrocatalyst was designed and prepared using a facile method based on plasma engineering. The excess Fe-ions in the Fe-enriched FeNi3 nanoparticles led to a high degree of lattice distortion that produced abundant oxygen-active sites. The electrocatalyst exhibited excellent oxygen evolution reaction (OER) activity as well as favorable oxygen reduction reaction (ORR) activity in an alkaline electrolyte. In addition, the electrocatalyst revealed a lower potential difference (ΔE = 0.80 V vs. RHE) in a bifunctional oxygen reaction compared to that of the benchmark 20 wt% Pt/C + Ir/C (ΔE = 0.84 V vs. RHE), and most of the reported FeNi3 alloy-doped carbon catalysts. Based on DFT calculations, the lattice distortion in Fe-enriched-FeNi3/NC promoted a higher density of active electrons around the Fermi level. Owing to its great bifunctional oxygen activities, Fe-enriched FeNi3/NC was applied as an ORR/OER catalyst in the air cathode in a homemade zinc-air battery and exhibited an excellent discharge-charge voltage gap (0.89 V), peak power density (89 mW/cm2), and high specific capacity of 734 mAh/g at 20 mA/cm2, which outperformed the benchmark 20 wt% Pt/C + Ir/C electrocatalyst. In summary, this research provides a novel strategy to enhance the OER/ORR activities of transition metal-based alloys through lattice distortion defects. In addition, it provides a new pathway for achieving noble metal-free air cathode materials for the next generation Zn-air battery.To improve the electrical conductivity and relief the large volume variation, carbon coated CoP particles were designed to homogeneously embed into porous carbon sheets, which were synthesized though a simultaneous carbonization and phosphorization method. Notably, the uniform carbon shells and porous carbon sheets constructed a tough conductive matrix to enhance the electron transfer and structural stability during charging/discharging processes. Moreover, the heteroatom doping of nitrogen and sulfur could not only introduce more active sites and defects on the carbon sheets, but also increased electrical conductivity. Owing to the unique structure, the obtained material displayed good electrochemical performance for lithium storage (638.8 mA h g-1 at 0.2 A g-1 after 500 cycles and 334.9 mA h g-1 at 10 A g-1) and sodium storage (329.4 mA h g-1 at 0.2 A g-1 after 150 cycles and 162.4 mA h g-1 at 5 A g-1). More importantly, the reaction mechanism and the ion diffusion coefficient were explored by ex-situ XRD and EIS for both LIBs and SIBs. This versatile approach may avail to predigest the tedious phosphating process to obtain high-performance TMPs-based hybrids (such as Ni2P/C) by employing other metal salts.Phosphorus-doped g-C3N4/ZnIn2S4 (PCN/ZIS) heterojunction photocatalysts were constructed by solvothermal method. The physical and chemical properties were investigated with X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The degradation of antibiotic wastewater was used to investigate the photocatalytic activities of composites under visible-light irradiation. The 10% PCN/ZIS had the best photocatalytic degradation performance for tetracycline with a photodegradation rate of 0.0874 min-1, which is respectively about 2.9 and 52.0 times than that of pure ZIS and PCN. Meanwhile, it was concluded that the holes and ⋅O2- (superoxide radicals) play dominant roles in the photocatalytic reactions through radicals trapping experiments, while ⋅OH (hydroxyl radicals) has a negative effect. In addition, 10%PCN/ZIS, with excellent stability and recyclability, also exhibited high photocatalytic activity for terramycin, chlortetracycline and ofloxacin. Overall, with the enhanced photocatalytic performance, PCN/ZIS could be potentially applied for photocatalytic degradation of antibiotic wastewater.A novel deodorizer that is capable of selectively eliminating the odorous chemicals, such as ammonia, trimethylamine, hydrogen sulfide and methyl mercaptan, is described. The deodorizer is a nanostructured aerogel by nature, consisting of 2,2-6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulose nanofibrils (CNF), transition metal divalent cations (M2+), and multi-walled carbon nanotubes (CNT) as the constitutive elements. CNF are firstly mixed with M2+ (M2+, in this paper, typifies Ni2+, Co2+ and Cu2+) to form CNF-M2+ complexes, monodispersed CNT is then mixed to prepare CNT/CNF-M2+ waterborne slurries; CNT/CNF-M2+ hybridized aerogels are finally obtained via freezing-drying of the CNT/CNF-M2+ waterborne slurries. OSI-027 purchase The CNT/CNF-M2+ aerogels are a foam-like structure consisting of CNF and CNT as backbones and M2+ as linkers. The aerogels show higher capabilities (in comparison with activated carbon) for selectively adsorbing ammonia, trimethylamine, hydrogen sulfide and methyl mercaptan. Computing simulations suggest a theoretical conclusion that the odorous chemicals are absorbed in a preferring manner of bimolecular absorptions via the M2+ moieties.
Website: https://www.selleckchem.com/products/OSI027.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team