Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Yet, across task conditions, we did not find convincing evidence for the notion that conscious access is affected by rapid top-down selection-related modulations of the strength of early sensory representations induced by the preceding visual event. These results cannot easily be explained by existing accounts of how attentional selection shapes conscious access under rapidly changing input conditions, and have important implications for theories of the attentional blink and consciousness more generally.The inference of cortical sulcal labels often focuses on deep (primary and secondary) sulcal regions, whereas shallow (tertiary) sulcal regions are largely overlooked in the literature due to the scarcity of manual/well-defined annotations and their large neuroanatomical variability. In this paper, we present an automated framework for regional labeling of both primary/secondary and tertiary sulci of the dorsal portion of lateral prefrontal cortex (LPFC) using spherical convolutional neural networks. We propose two core components that enhance the inference of sulcal labels to overcome such large neuroanatomical variability (1) surface data augmentation and (2) context-aware training. (1) To take into account neuroanatomical variability, we synthesize training data from the proposed feature space that embeds intermediate deformation trajectories of spherical data in a rigid to non-rigid fashion, which bridges an augmentation gap in conventional rotation data augmentation. (2) Moreover, we design a two-stage tSphericalLabeling).The functional architecture of the resting brain, as measured with the blood oxygenation level-dependent functional connectivity (BOLD-FC), is slightly modified during task performance. In previous work, we reported behaviorally relevant BOLD-FC modulations between visual and dorsal attention regions when subjects performed a visuospatial attention task as compared to central fixation (Spadone et al., 2015). Here we use magnetoencephalography (MEG) in the same group of subjects to identify the electrophysiological correlates of the BOLD-FC modulation found in our previous work. While BOLD-FC topography, separately at rest and during visual attention, corresponded to neuromagnetic Band-Limited Power (BLP) correlation in the alpha and beta bands (8-30 Hz), BOLD-FC modulations evoked by performing the visual attention task (Spadone et al. PKC inhibitor 2015) did not match any specific oscillatory band BLP modulation. Conversely, following the application of an orthogonal spatial decomposition that identifies common inter-subject co-variations, we found that attention-rest BOLD-FC modulations were recapitulated by multi-spectral BLP-FC components. Notably, individual variability of alpha connectivity between Frontal Eye Fields and visual occipital regions, jointly with decreased interaction in the Visual network, correlated with visual discrimination accuracy. In summary, task-rest BOLD connectivity modulations match multi-spectral MEG BLP connectivity.Dynamic contrast-enhanced MRI (DCE-MRI) is increasingly used to quantify and map the spatial distribution of blood-brain barrier (BBB) leakage in neurodegenerative disease, including cerebral small vessel disease and dementia. However, the subtle nature of leakage and resulting small signal changes make quantification challenging. While simplified one-dimensional simulations have probed the impact of noise, scanner drift, and model assumptions, the impact of spatio-temporal effects such as gross motion, k-space sampling and motion artefacts on parametric leakage maps has been overlooked. Moreover, evidence on which to base the design of imaging protocols is lacking due to practical difficulties and the lack of a reference method. To address these problems, we present an open-source computational model of the DCE-MRI acquisition process for generating four dimensional Digital Reference Objects (DROs), using a high-resolution brain atlas and incorporating realistic patient motion, extra-cerebral signals, noise and k-space sampling. Simulations using the DROs demonstrated a dominant influence of spatio-temporal effects on both the visual appearance of parameter maps and on measured tissue leakage rates. The computational model permits greater understanding of the sensitivity and limitations of subtle BBB leakage measurement and provides a non-invasive means of testing and optimising imaging protocols for future studies.Intracellular iron is essential for many neurobiological mechanisms. However, at high concentrations, iron may induce oxidative stress and inflammation. Brain iron overload has been shown in various neurodegenerative disorders and in normal aging. Elevated brain iron in old age may trigger brain dysfunction and concomitant cognitive decline. However, the exact mechanism underlying the deleterious impact of iron on brain function in aging is unknown. Here, we investigated the role of iron on brain function across the adult lifespan from 187 healthy participants (20-79 years old, 99 women) who underwent fMRI scanning while performing a working-memory n-back task. Iron content was quantified using R2* relaxometry, whereas neuroinflammation was estimated using myo-inositol measured by magnetic resonance spectroscopy. Striatal iron increased non-linearly with age, with linear increases at both ends of adulthood. Whereas higher frontostriatal activity was related to better memory performance independent of age, the link between brain activity and iron differed across age groups. Higher striatal iron was linked to greater frontostriatal activity in younger, but reduced activity in older adults. Further mediation analysis revealed that, after age 40, iron provided unique and shared contributions with neuroinflammation to brain activations, such that neuroinflammation partly mediated brain-iron associations. These findings promote a novel mechanistic understanding of how iron may exert deleterious effects on brain function and cognition with advancing age.The linearly constrained minimum variance beamformer is frequently used to reconstruct sources underpinning neuromagnetic recordings. When reconstructions must be compared across conditions, it is considered good practice to use a single, "common" beamformer estimated from all the data at once. This is to ensure that differences between conditions are not ascribable to differences in beamformer weights. Here, we investigate the localization accuracy of such a common beamformer. Based on theoretical derivations, we first show that the common beamformer leads to localization errors in source reconstruction. We then turn to simulations in which we attempt to reconstruct a (genuine) source in a first condition, while considering a second condition in which there is an (interfering) source elsewhere in the brain. We estimate maps of mislocalization and assess statistically the difference between "standard" and "common" beamformers. We complement our findings with an application to experimental MEG data. The results show that the common beamformer may yield significant mislocalization.
Here's my website: https://www.selleckchem.com/products/vtx-27.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team