Notes
![]() ![]() Notes - notes.io |
Osteoporosis is a disease prevalent in older adults, characterized by high porosity in bone and subsequent decrease in fracture resistance. This demographic is also the population that most frequently receives devices such as hip implants. However, high porosity complicates surgery and reduces the fixation and effectiveness of orthopaedic devices, which are typically designed using cadaveric specimens from the general population. Synthetic bones are also used in the design of such devices but need to represent the properties of the patient population. Thus, the mechanical response of two iterations of novel synthetic femurs were evaluated for their ability to represent osteoporotic cadaveric specimens and were tested and compared against cadaveric specimens across four loading modes. The first iteration had reduced density and wall thickness compared to standard models and was typically too rigid or too stiff to be a feasible alternative to cadaveric specimens. The second iteration, with similarly reduced wall thickness and further reduced density, was quite representative, with no statistical differences identified against the cadaveric specimens in any loading mode, except in screw pullout. Such a model can provide a foundation for the development of orthopaedic devices better suited to osteoporotic bone, potentially improving surgical outcomes, reducing medical expense, and improving quality of life for patients.Clear dental aligners are commonly manufactured using thermoplastic materials such as Duran and Durasoft. Lumacaftor Using conventional thermoforming methods there are inherent disadvantages including time consumption and poor geometrical accuracies that often occur. The use of digital technologies and 3D printing techniques for producing dental aligners is often preferred where possible. Innovation in 3D printing has resulted in bio-compatible materials becoming more readily available, including Formlabs Dental LT Clear resin, which is a 3D printable and Class IIa bio-compatible material. In this paper, we investigate the difference between thermoplastic materials such as Scheu-Dental Duran and Durasoft and 3D printed Dental LT using Finite Element Analysis (FEA)/Finite Element Modelling (FEM) in a dental aligner case based on an analysis of von Mises stress distribution at molars, incisors and canines for a total of 33161 nodes using Finite Element Analysis (FEA). Maximum von Mises stress distribution at all of the sections under the action of non-linear compressive forces equivalent to human biting force (up to 600 N) were discovered to vary within a range of 0.2-7.7% for Dental LT resin. The Duran and Durasoft cases were comparable, thereby widening the scope for the use of Dental LT in various dentistry applications, including clear aligners.Collagen constitutes one-third of human-body proteins, providing mechanical strength and structural stability. Films of collagen are widely used in tissue engineering as scaffolds for wound healing and corneal implants, among other applications, presupposing the investigation of their mechanical properties and performance under various loading and environmental conditions. Part I of this research (Bose et al., 2020) demonstrated a drastic change in the mechanical response of collagen films under in-aqua conditions when compared to dry specimens. It was also observed that collagen films exhibited a strain-rate-dependent hardening behaviour with a strain-rate-sensitivity exponent ranging from 0.02 to 0.2. In Part II, the cyclic and time-dependent behaviours of collagen films were analysed under different loading and environmental conditions. Strain ratchetting was observed for collagen subjected to cyclic loading under various stress levels and environmental (in-air and in-aqua) conditions, while the in-aqua samples demonstrated an increase in the stiffness (50% in the first cycle), which may be referred to as cyclic stiffening. In contrast, the dry samples showed a drop in the modulus after the first cycle, without any subsequent changes. Additionally, time-dependent viscoelastic properties were analysed, using dynamic mechanical analysis as well as creep and stress-relaxation techniques. Tan δ values for dry samples ranged from 0.05 to 0.075, while for hydrated ones it varied from 0.12 to 0.24. Collagen films exhibited primary and secondary creep stages, while the initial stress-relaxation was fast followed by a monotonous decay. The stress-strain-time data obtained from experiments were fitted in Prony series to estimate the relaxation moduli and times.
Presence of comorbidities in patients with Coronavirus disease 2019 (COVID-19) have often been associated with increased in-hospital complications and mortality. Intriguingly, several developed countries with a higher quality of life have relatively higher mortality with COVID-19, compared to the middle- or low-income countries. Moreover, certain ethnic groups have shown a higher predilection to contract COVID-19, with heightened mortality. We sought to review the available literature with regards to impact of COVID-19 and comorbidities on the health and economics, especially in context to the developing countries including India.
A Boolean search was carried out in PubMed, MedRxiv and Google Scholar databases up till August 23, 2020 using the specific keywords, to find the prevalence of comorbidities and its outcome in patients with COVID-19.
All available evidence consistently suggests that presence of comorbidities is associated with a poor outcome in patients with COVID-19. Diabetes prevalence is highest in Indian COVID-19 patients, compared to other countries. Majority of the patients with COVID-19 are asymptomatic ranging from 26 to 76%.
Universal masking is the need of hour during unlock period. Low-income countries such as India, Brazil and Africa with less resources and an average socio-economic background, must adopt a strict policy for an affordable testing programs to trace, test, identify and home quarantine of asymptomatic cases. Despite the huge number of COVID-19 patients, India still has low volume research at the moment.
Universal masking is the need of hour during unlock period. Low-income countries such as India, Brazil and Africa with less resources and an average socio-economic background, must adopt a strict policy for an affordable testing programs to trace, test, identify and home quarantine of asymptomatic cases. Despite the huge number of COVID-19 patients, India still has low volume research at the moment.
Here's my website: https://www.selleckchem.com/products/VX-809.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team