Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The compression tests showed the Young's moduli of all the as-fabricated samples (~3.79-~10.99 GPa) were similar to that of cortical bone. The FGM structures built by honeycomb-like unit cells with supporting structure in outer layer exhibited highest yield strength, toughness and stable mechanical properties which is more appropriate to build orthopedic scaffolds for load-bearing application. Our aim is to estimate regional mechanical properties of the annulus fibrosus (AF) using a multi-relaxation tensile test and to examine the relevance of using the transverse dilatations in the identification procedure. We collected twenty traction specimens from both outer (n = 10) and inner (n = 10) sites of the anterior quadrant of the annulus fibrosus of one pig spine. A 1-h multi-relaxation tensile test in the circumferential direction allowed us to measure the force in the direction of traction and the dilatations in all three directions. We performed a specific-sample finite element inverse analysis to identify variations, along the radial position, of material and structural parameters of a hyperelastic compressible and anisotropic constitutive law. Our experimental results reveal that the outer sites are subjected to a significantly greater stress than the inner sites and that both sites exhibit an auxetic behavior. Our numerical results suggest that the inhomogeneous behavior arises from significant variations of the fiber angle taken into account within the hyperelastic constitutive law. In addition, we found that the use of the measured transverse dilatations in the identification procedure had a strong impact on the identified mechanical parameters. This pilot study suggests that, in quasi-static conditions, the annulus fibrosus may be modeled by a hyperelastic compressible and anisotropic law with a fiber angle gradient from inner to outer periphery. The impact behavior of human skull sandwich cellular bones with gradient geometric feature is investigated using theoretical and numerical methods. To predict the structural impact performance theoretically, the skull bone is considered as a multi-layer sandwich structure where the effect of the number of layers on its impact behavior is discussed. Three sections with different porosities and thicknesses obtained from the rebuilt 3D skull model are selected, and the numerical simulation is carried out to illustrate the reliability of the theoretical model. A close agreement between the numerical and theoretical results is observed. Moreover, the energy absorption capacity of the skull in the theoretical model is further demonstrated by experimental results of the human skull under impact loading from the literature. Numerical and experimental results show that the theoretical model can effectively predict the impact performance of the skull cellular bone. Therefore, this study can provide a reliable theoretical basis for the evaluation of the mechanical behavior of the human skull under dynamic loads. Information on the adaptation of bone structures during evolution is rare since histological data are limited. Micro- and nano-computed tomography of a fossilized vertebra from Champsosaurus sp., which has an estimated age of 70-73 million years, revealed lower porosity and higher bone density compared to modern Crocodylidae vertebrae. Mid-infrared reflectance and energy dispersive X-ray mapping excluded a petrification process, and demonstrated a typical carbonate apatite distribution, confirming histology in light- and electron microscopy of the preserved vertebra. SCH-527123 ic50 As a consequence of this evolutionary process, the two vertebrae of modern Crocodylidae show reduced overall stiffness in the finite element analysis simulation compared to the fossilized Champsosaurus sp. vertebra, with predominant stiffness along the longitudinal z-axes. Tooth loss is a problem that affects both old and young people. It may be caused by several conditions, such as poor oral hygiene, lifestyle choices or even diseases like periodontal disease, tooth grinding or diabetes. Nowadays, replacing a missing tooth by an implant is a very common process. However, many limitations regarding the actual strategies can be enumerated. Conventional screwed implants tend to induce high levels of stress in the peri-implant bone area, leading to bone loss, bacterial bio-film formation, and subsequent implant failure. In this sense, root-analogue dental implants are becoming promising solutions for immediate implantation due to their minimally invasive nature, improved bone stress distribution and because they do not require bone drilling, sinus lift, bone augmentation nor other traumatic procedures. The aim of this study was to analyse and compare, by means of FEA, the stress fields of peri-implant bone around root-analogue and screwed conventional zirconia implants. For that purpose, one root-analogue implant, one root-analogue implant with flaps, two conventional implants (with different threads) and a replica of a natural tooth were modelled. COMSOL was used to perform the analysis and implants were subjected to two simultaneous loads 100 N axially and 100 N oblique (45°). RESULTS revealed that root-analogue implants, namely with flaps, should be considered as promising alternatives for dental implant solutions since they promote a better stress distribution in the cortical bone when compared with conventional implants. The ingenious concept of phase reversion annealing involving cold deformation of parent austenite to strain-induced martensite, followed by annealing was used to obtain nano-grained/ultrafine-grained (NG/UFG) structure in a Cu-bearing biomedical austenitic stainless steel resulting in high strength-high ductility combination. Having employed the concept effectively, the primary objective of this study is to critically analyze the interplay between the load-controlled deformation response, strain-rate sensitivity and deformation mechanism of NG/UFG austenitic stainless steel via nanoscale deformation experiments and compare with its coarse-grained (CG) counterpart. The study demonstrated that the strain-rate sensitivity of NG/UFG was ~1.5 times that of the CG structure. Post-mortem electron microscopy of plastic zone surrounding the indents indicated that the active deformation mechanism was nanoscale twinning with typical characteristics of a network of intersecting twins in the NG/UFG structure, while strain-induced martensite transformation was the effective deformation mechanism for the CG structure.
Here's my website: https://www.selleckchem.com/products/sch-527123.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team