Notes
![]() ![]() Notes - notes.io |
Conjugated bile acids are metabolised by upper small intestinal microbiota, and serum levels of taurine-conjugated bile acids are elevated and correlated with insulin resistance in people with type 2 diabetes. However, whether changes in taurine-conjugated bile acids are necessary for small intestinal microbiome to alter insulin action remain unknown.
We evaluated circulating and specifically brain insulin action using the pancreatic-euglycaemic clamps in high-fat (HF) versus chow fed rats with or without upper small intestinal healthy microbiome transplant. Chemical and molecular gain/loss-of-function experiments targeting specific taurine-conjugated bile acid-induced changes of farnesoid X receptor (FXR) in the brain were performed in parallel.
We found that short-term HF feeding increased the levels of taurochenodeoxycholic acid (TCDCA, an FXR ligand) in the upper small intestine, ileum, plasma and dorsal vagal complex (DVC) of the brain. Transplantation of upper small intestinal healthy microbiome into the upper small intestine of HF rats not only reversed the rise of TCDCA in all reported tissues but also enhanced the ability of either circulating hyperinsulinaemia or DVC insulin action to lower glucose production. Further, EPZ004777 ic50 of TCDCA or FXR agonist negated the enhancement of insulin action, while genetic knockdown or chemical inhibition of FXR in the DVC of HF rats reversed insulin resistance.
Our findings indicate that FXR in the DVC is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats, and highlight a previously unappreciated TCDCA-FXR axis linking gut microbiome and host insulin action.
Our findings indicate that FXR in the DVC is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats, and highlight a previously unappreciated TCDCA-FXR axis linking gut microbiome and host insulin action.
To assess whether a faecal immunochemical test (FIT) could be used to select patients with suspected colorectal cancer (CRC) symptoms for urgent investigation.
Multicentre, double-blinded diagnostic accuracy study in 50 National Health Service (NHS) hospitals across England between October 2017 and December 2019. Patients referred to secondary care with suspected CRC symptoms meeting NHS England criteria for urgent 2 weeks wait referral and triaged to investigation with colonoscopy were invited to perform a quantitative FIT. The sensitivity of FIT for CRC, and effect of relevant variables on its diagnostic accuracy was assessed.
9822 patients were included in the final analysis. The prevalence of CRC at colonoscopy was 3.3%. #link# The FIT positivity decreased from 37.2% to 19.0% and 7.6%, respectively, at cut-offs of 2, 10 and 150 µg haemoglobin/g faeces (µg/g). The positive predictive values of FIT for CRC at these cut-offs were 8.7% (95% CI, 7.8% to 9.7%), 16.1% (95% CI 14.4% to 17.8%) and 31.1% (95% CI 27.8% to 34.6%), respectively, and the negative predictive values were 99.8% (95% CI 99.7% to 99.9%), 99.6% (95% CI 99.5% to 99.7%) and 98.9% (95% CI 98.7% to 99.1%), respectively. The sensitivity of FIT for CRC decreased at the same cut-offs from 97.0% (95% CI 94.5% to 98.5%) to 90.9% (95% CI 87.2% to 93.8%) and 70.8% (95% CI 65.6% to 75.7%), respectively, while the specificity increased from 64.9% (95% CI 63.9% to 65.8%) to 83.5% (95% CI 82.8% to 84.3%) and 94.6% (95% CI 94.1% to 95.0%), respectively. The area under the receiver operating characteristic curve was 0.93 (95% CI 0.92 to 0.95).
FIT sensitivity is maximised to 97.0% at the lowest cut-off (2 µg/g); a negative FIT result at this cut-off can effectively rule out CRC and a positive FIT result is better than symptoms to select patients for urgent investigations.
ISRCTN49676259.
ISRCTN49676259.This study reports that parathymosin (PTMS) is secreted by hypothalamic stem/progenitor cells (htNSC) to inhibit senescence of recipient cells such as fibroblasts. Upon release, PTMS is rapidly transferred into the nuclei of various cell types, including neuronal GT1-7 cells and different peripheral cells, and it is effectively transferred into neuronal nuclei in various brain regions in vivo. Notably, brain neurons also produce and release PTMS, and because neuronal populations are large, they are important for maintaining PTMS in the cerebrospinal fluid which is further transferable into the blood. Compared with several other brain regions, the hypothalamus is stronger for long-distance PTMS transfer, supporting a key hypothalamic role in this function. In physiology, aging is associated with declines in PTMS production and transfer in the brain, and ptms knockdown in the hypothalamus versus hippocampus were studied showing different contributions to neurobehavioral physiology. In conclusion, the brain is an endocrine organ through secretion and nuclear transfer of PTMS, and the hypothalamus-brain orchestration of this function is protective in physiology and counteractive against aging-related disorders.In mechanosensory hair cells (HCs) of the ear, the transcriptional repressor REST is continuously inactivated by alternative splicing of its pre-mRNA. This mechanism of REST inactivation is crucial for hearing in humans and mice. Rest is one of many pre-mRNAs whose alternative splicing is regulated by the splicing factor SRRM4; Srrm4 loss-of-function mutation in mice (Srrm4 bv/bv ) causes deafness, balance defects, and degeneration of all HC types other than the outer HCs (OHCs). The specific splicing alterations that drive HC degeneration in Srrm4 bv/bv mice are unknown, and the mechanism underlying SRRM4-independent survival of OHCs is undefined. Here, we show that transgenic expression of a dominant-negative REST fragment in Srrm4 bv/bv mice is sufficient for long-term rescue of hearing, balancing, HCs, alternative splicing of Rest, and expression of REST target genes including the Srrm4 paralog Srrm3 We also show that in HCs, SRRM3 regulates many of the same exons as SRRM4; OHCs are unique among HCs in that they transiently down-regulate Rest transcription as they mature to express Srrm3 independently of SRRM4; and simultaneous SRRM4-SRRM3 deficiency causes complete HC loss by preventing inactivation of REST in all HCs. Thus, our data reveal that REST inactivation is the primary and essential role of SRRM4 in the ear, and that OHCs differ from other HCs in the SRRM4-independent expression of the functionally SRRM4-like splicing factor SRRM3.
Homepage: https://www.selleckchem.com/products/epz004777.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team